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Melatonin prevents the free radical and MADD metabolic profiles
induced by antituberculosis drugs in an animal model

Introduction

Treatment of pulmonary tuberculosis (TB) consists of two
phases, i.e. an intensive phase of treatment with four anti-

TB drugs (2 months) and then a maintenance phase for the
rest of the treatment period (4 months). TB treatment is
carried out using a combined therapy of anti-TB drugs

which include isoniazid, rifampicin, ethambutol and pyra-
zinamide with less risk for development of drug resistance.
Various combinations of anti-TB drugs, such as Rifater,
are commercially available as a single administration,

which constitutes a fixed combination of isoniazid, rif-
ampicin and pyrazinamide and this three-drug combination
is widely used in TB treatment. However, while these

agents are effective antibiotics, TB patients treated with
rifampicin, pyrazinamide, and isoniazid can experience
hepatotoxicity resulting in a discontinuation of treatment

in these patients [1,2]. Anti-TB chemotherapy can also be
associated with a number of other side-effects which
include myocardial damage, respiratory complications [3],

hypoglycaemia [4], neurological complications [5–7], and
acidosis [6].
At present, very little is known about the metabolism of

anti-TB chemotherapeutics. It is however well known that

the catalase enzyme of Mycobacterium tuberculosis is
responsible for the conversion of isoniazid to its active

bactericidal equivalent isonicotinic acid hydrazide as well as
acetylisoniazid [8]. Superoxide is formed during isoniazid
oxidation and is thought to be involved in the activation

process [9]. Further isoniazid metabolites that have been
detected in humans and rats include isonicotinic acid,
isonicotinylglycine [10], acetylhydrazine, and diacetylhydr-
azine [11]. This can also take place via host-specific

enzymes, such as N-acetyltransferase [12]. Rifampicin is
already in its active state at the stage of administration
and can be converted into two inactive products, Rip-

Ma 3-formyl-23-[O-(alpha-d-ribofuranosyl)] and Rip-Mb
23-[O-(alpha-d-ribofuranosyl)] by mycobacteria [13]. A
number of rifampicin metabolites have also been identified

in human plasma, urine and saliva [14, 15]. Pyrazinamide in
turn is metabolized into a number of metabolites which
include pyrazinoic acid, 5-hydroxypyrazinoic acid, 5-hy-
droxypyrazinamide [16] and pyrazinuric acid [17]. Although

a number of drug metabolites have been identified, their
effects in vivo have not yet been fully established.
The safety of anti-TB treatment is presently under

scrutiny and various drug combinations and treatment
times have been suggested to alleviate the burden of toxic
side-effects [2]. Here we show that the anti-TB drug

combination, Rifater, increases the oxidative stress in an
animal model and affects the organic acid profiles. We also
show that the application of the antioxidant, melatonin,
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alleviates this oxidative stress and negates the associated
increased organic acid profiles.

Materials and methods

Melatonin administration

Melatonin (Sigma, St Louis, MO, USA) was administered
to mildly anaesthetized experimental animals by gastric
gavage in a saline suspension with commercially available

maize meal. Each animal was given 18.56 lg melatonin/kg
body weight (corresponding to reported physiological
human intake) [18]. The maximum volume per gavage

was 1.0 mL for a 500–600 g animal.

Sodium salicylate

Radical assessment was carried out as previously described
[19]. In brief, sodium salicylate (Sigma) was administered
to all experimental animals under mild general anaesthesia

at a dose of 20 mg/kg body weight. Salicylate spontane-
ously binds hydroxyl radicals (•OH) as they are generated
to form 2,3- and 2,5-dihydroxybenzoic acid (DHBA) which

is excreted [20] and can be quantified via gas chromatog-
raphy-coupled mass spectrometry (GC-MS). Ingelman-
Sundberg et al. [21] however determined that cytochrome

P450 catalyses the formation of 2,5-DHBA, but not
2,3-DHBA. Hence, the measurement of 2,3-DHBA pro-
vides a method for monitoring the formation of •OH [21].

In vivo study

Thirty normal adult (>500 g) Sprague–Dawley rats were

obtained from the central breeding facility of the University
of Stellenbosch and housed in standard laboratory rodent
cages in a thermally controlled environment with free access

to water and standard rodent diet. All procedures were
carried out with the necessary ethical approval, according
to the Helsinki Protocol and MRC and NIH regulations for
the treatment of laboratory animals. Rats received Rifater

FC (Aventis, Paris, France) orally in a dose representing
12.0 mg rifampicin, 0.8 mg isoniazid, 23.0 mg pyrazina-
mide per 1 kg body weight, and 18.56 lg melatonin/kg

body weight via gastric gavage under general anaesthesia

(described above). Experimental animals were fasted 4 hr
prior to intraperitonial injection of 20 mg/kg body weight
sodium salicylate. Table 1 gives a layout of animal groups

for various experimental procedures for 2,3-DHBA deter-
minations. For organic acid determination, the same
procedure was followed in the absence of salicylic acid.
The animals were then transferred to standard metabolic

cages for 24 hr with ad libidum access to water only. Urine
samples were collected at 6-hr intervals in a 1.0 m hydro-
chloric acid solution on ice and then stored at )80�C for

analysis using GC-MS.

Creatinine determinations

Creatinine determinations were made using the methodo-
logy described by Chalmers and Lawson [22]. Creatinine
determination on each of the urine samples was completed

prior to organic acid extraction. Creatinine values are used
to normalize results obtained from different sources [23]
and the values (in mg%) indicate the amount of urine to be

used, the amount of internal standard to be added, as well
as the volumes of bis-trimethylsilyl-trifloroacetamide (BST-
FA) and trimethy-chlorosilane (TMCS) to be used for

derivatization. The creatinine values were determined
spectrophotometrically by a standard procedure using the
Technicon RA 100 analyser system (Technicon Instru-

ments, Tarrytown, NY, USA).

Organic acid extractions

An amount of urine, as determined from the creatinine value,
was acidified with 5 n HCL (Merck, Darmstadt, Germany)
to a pH < 2. The internal standard (3-phenylbutyric acid,

Sigma) was added as a volume of 25 lmol/mg creatinine,
followed by the addition of 6 mL of ethylacetate (Sigma) to
the mixture. The solution was shaken for 10 min and

centrifuged at 710 g at room temperature for 1 min. The
organic phase (topphase)was removedwith aPasteur pipette
and placed into a second large teflon culture tube. Diethyl-
ether (Sigma) (3 mL)was added to the aqueous phase and the

solution was shaken for 10 min and centrifuged for 1 min as
before. The organic phase was again removed and added to
the first organic phase. An excess of anhydrous Na2SO4

(approximately 2 mg) (Sigma) was added to remove any

Table 1. Grouping of experimental rats in
various treatment protocols

Group
Animal
numbers Treatment

1 (control group) 1–6 Days 1–6: saline; day 7: 20 mg/kg sodium
salicylate administered prior to urine collection

2 7–12 Days 1–6: Rifater FC; day 7: Rifater FC and 20 mg/kg
sodium salicylate administered prior to urine collection

3 13–18 Days 1–7: 18.56 lg/kg melatonin; day 8–14: Rifater FC and
18.56 lg/kg melatonin; day 15: 18.56 lg/kg
melatonin, Rifater FC and 20 mg/kg sodium
salicylate administered prior to urine collection

4 19–24 Days 1–6: saline; day 7: once off Rifater FC and 20 mg/kg
sodium salicylate administered prior to urine collection

5 25–30 Days 1–6: saline; day 7: once off Rifater FC,
18.56 lg/kg melatonin and 20 mg/kg sodium salicylate
administered prior to urine collection
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remaining water from the sample. The tube was briefly
vortexed and centrifuged for 5 min as before. The organic
phase was then decanted from the pellet into a small Teflon-

lined culture tube and dried under nitrogen.

Derivatization and analysis by GC-MS

The dry organic acid extract was derivatized at 70�C for
30 min with 22.6 lL BSTFA/lmol creatinine (Sigma) and
4.5 lL TMCS/lmol creatinine (Sigma). Of this, 0.2 lL was

injected into the GC-MS.
The GC-MS analyses were carried out using an Agilent

6890 GC ported to a 5973 mass selective detector (Palo

Alto, CA, USA). For the acquisition of an electron
ionization mass spectrum, an ion source temperature of
200�C and electron energy of 70 eV was used. The gas
chromatograph was equipped with an SE-30 capillary

column, a split/splitless injection piece (250�C) and a direct
GC-MS coupling (260�C). The splitless injection (0.6 lL)
was used during the MS analysis. Helium (1 mL/min) was

used as the carrier gas. An oven temperature of 60�C,
isometric for 2 min, was used as an initial temperature
after which a rise of 4�C/min was continued until a

temperature of 120�C was reached. This was followed by a
temperature increase of 10�C/min until a final temperature
of 280�C was reached. This temperature was then main-

tained for a further 4 min.

Data processing

Statistical analyses were carried out using one-way ANO-
VA of the area under the curve (AUC) of the various
treatment groups. Tukey post-hoc comparisons were made

to determine statistical difference. All P-values <0.05 were
considered statistically significant.

Results

Our aim was to evaluate the contribution of the Rifater FC
combinational anti-TB drug formulation to the •OH and

organic acid profiles in an animal model, as well as to test
the effects that melatonin would have on these. •OH
produced by Rifater in the presence and absence of

melatonin were monitored by measuring the production
of 2,3-DHBA. Table 2 and Fig. 1 indicate that administra-
tion of anti-TB drugs 7 days prior to salicylate administra-

tion and urine collection (group 2) resulted in a marked
increase in 2,3-DHBA (P ¼ 0.0019).
Preconditioning the animal model with 18.56 lg/kg

melatonin for 7 days prior to a 7-day Rifater/melatonin
co-administration (i.e. a total of 14 days prior to salicylate
administration and urine collection: group 3) resulted in a
significant reduction (P ¼ 0.038) below that of the control

levels (group 1) of the free radical burst observed when
Rifater is administered alone (P < 0.001). A once off
Rifater–melatonin co-treatment (group 5) prior to sodium

salicylate injection did not result in any significant changes
when compared with that of a Rifater single treatment as
for experimental animal group 4. Both groups 4 and 5

followed the same trend as the 7-day Rifater treatment
group (results not shown).

Comparison of the organic acid profiles in the animals
given the anti-TB drugs to those of the controls showed
that the following metabolites occurred in significantly
higher concentrations: isovalerylglycine, ethylmalonic acid,

butyrylglycine, 2-methylbutyrylglycine and suberic acid
(Fig. 2, Table 2).

Table 2. Statistical comparison of organic acid values between
experimental animal groups

MAUC S.E.M. P-values

2,3-DHBA
Control 1.12(a,c) 0.23 a ¼ 0.019*

b < 0.00l*
c ¼ 0.038*

Rifater 1.99(a,b) 0.24
Rifater + melatonin 0.34(b,c) 0.14

Butyrylglycine
Control 22.60(a, c) 4.17 a ¼ 0.001*

b ¼ 0.031*
c ¼ 0.212

Rifater 82.39(a,b) 6.09
Rifater + melatonin 45.87(b,c) 2.85

Ethylmalonic acid
Control 27.41(a,c) 3.82 a ¼ 0.004*

b ¼ 0.012*
c ¼ 0.864

Rifater 58.16(a,b) 8.24
Rifater + melatonin 31.155(b,c) 5.82

2-Methylbutyrylglycine
Control 3.2l(a, c) 1.68 a < 0001*

b < 0.001*
c ¼ 0.742

Rifater 19.13(a,b) 2.82
Rifater + melatonin 5.38(b,c) 1.43

Suberic acid
Control 1.97(a,c) 0.73 a ¼ 0.037*

b ¼ 0.889
c ¼ 0.888

Rifater 6.77(b,c) 1.41
Rifater + melatonin 2.79(b,c) 1.32

Isovalerylglycine
Control 6.88(a,c) 0.77 a ¼ 0.001*

b ¼ 0.002*
c ¼ 0.957

Rifater 24.62(a,b) 1.90
Rifater + melatonin 7.98(b,c) 2.15

Mean values with lettering in common were compared,
�*� indicates significant difference (P < 0.05).
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This organic acid profile is characteristic of a multiple
acyl-CoA dehydrogenase defect (MADD). Melatonin pre-
treatment prior to a 7-day Rifater/melatonin co-adminis-

tration (i.e. a total of 14 days prior to salicylate
administration and urine collection: group 3) resulted
in a significant decrease in all the above-mentioned
organic acids induced by the Rifater (except for suberic

acid, P ¼ 0.889) and consequently the organic acid con-
centration change between the control group and the
melatonin pretreatment group became nonsignificant. The

discrepancy in the suberic acid may be because of the higher
S.E.M. for the melatonin pretreatment group. The raw data
showed one animal in the group to have a higher suberic

acid production than the others in the same group. This

may be because of differences in metabolism, or an
underlying infection. Exclusion of this animal from the
group resulted in a significant P value of 0.03, when

comparing the melatonin pretreatment group to the Rifater
group.
Additionally, the Rifater-treated animals show a large

increase in the concentrations of the MADD metabolites

over a 24-hr period when compared with the control
animals, which show little fluctuation between their begin-
ning and end concentrations (Fig. 2). The average concen-

trations over the 24-hr period between the Rifater-treated
and the control animals are statistically, significantly
different (P ¼ 0.0065) for isovalerylglycine, 2-methylbuty-

rylglycine, butyrylglycine, ethylmalonic acid, and suberic
acid combined. The increase of the organic acids over 24 hr
was also significant (P ¼ 0.0013). Pretreatment of the
experimental animals with melatonin gave significantly

reduced organic acids over the 24-hr treatment period
(P ¼ 0.048) and, consequently, the organic acid concen-
tration change between the control animals and the

melatonin-treated animals was nonsignificant (P ¼ 0.083).
The significance of the increase of organic acids over 24 hr
displayed the same tendency as for the average concentra-

tions described above. Melatonin pretreatment significantly
reduced the formation of the individual MADD metabo-
lites induced when Rifater was administered alone

(P < 0.0001).

Discussion

Although radical species may not initiate disorders such as
cardiovascular disease [24, 25], they may influence disease
progression significantly. In patients with pulmonary TB,

inflammation-related oxidative stress has been implicated in
the pathogenesis of lung fibrosis and dysfunction [26, 27].
This fibrosis is thought to be mediated by activated

macrophages which are capable of releasing a variety of
chemicals including oxygen free radicals [28, 29].
It is already known that isoniazid, rifampicin, and

pyrazinamide, alone or in combination are responsible for

oxidative stress and increased lipid peroxidation [30–33].
Isoniazid also exerts control over the electron transport
chain in mycobateria at the level of NADH dehydrogenase

[34]. Together these actions generate additional oxidative
stress through the generation of superoxide [35], which is
converted by superoxide dismutase (SOD) to hydrogen

peroxide. In the presence of iron, hydrogen peroxide forms
•OH [35, 36]. Lipid peroxidation and the subsequent
inhibition of the electron transport chain can lead to a

secondary overflow of electrons and thus generate addi-
tional oxidative stress [35].
Our results clearly show that the increase in free

radicals at 6 hr in the experimental animal model used

was because of the administration of anti-TB drugs in the
form of the combination therapeutic agent Rifater FC. It
appears that animals could not effectively compensate for

the increased •OH production by endogenous antioxidant
systems. TB-infected patients may experience a similar
systemic radical increase after each daily intake of anti-

TB therapy as the role of free radicals in TB patients was
also demonstrated recently showing the total antioxidant
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Fig. 2. Concentrations of organic acids in rats characteristic of an
MADD profile, analysed by GCMS. The following treatment
protocols are represented – group 1: distilled water administered at
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status in patients are lowered following anti-TB drug
treatment [37].
Melatonin is well known as an efficient antioxidant and

has been shown to alleviate the burden of oxidative stress
by free radical scavenging in a magnitude of living systems
[38–43]. Melatonin has no known toxicity [39] in persons
taking it on a daily basis [44]. Melatonin is also known to

reduce drug toxicity [45] and increase the efficacy of
antibacterial drugs which include the anti-TB drug isoni-
azid [46]. Melatonin treatment was carried out at physio-

logical dosages, daily for 7 days prior to initiation of the
7-day melatonin–Rifater co-administration followed by
urine collection. At this concentration melatonin com-

pletely abolished the free radical burst induced by Rifater.
This could be due to melatonin’s free radical scavenging
ability and/or its effect on upregulation of antioxidant
enzymes such as SOD [47]. Apart from this, melatonin may

further reduce the occurrence of these •OH induced by
Rifater by reducing electron leakage at mitochondrial level
[48]. Melatonin is reported to stabilize mitochondrial inner

membranes by interaction with the lipid bilayers and in so
doing improve electron transport chain activity [48]. How-
ever, melatonin did not have any free radical reducing effect

in a single co-administration dose of melatonin and Rifater
(group 5) and the resulting free radical profile followed that
of the 7-day Rifater treatment profile (group 2). It would

appear that melatonin preconditioning prior to anti-TB
therapy is effective in counteracting the subsequent free
radical formation or that higher than physiological mela-
tonin concentrations are necessary for once-off treatments.

A second observation following treatment with Rifater
was the overall significant increase in concentration of
certain organic acids over the 24-hr experimental period.

The organic acids analysed fit a profile for MADD, an
autosomal recessive inborn error of metabolism [49] asso-
ciated with a defect on either the electron transport

flavoprotein (ETF) or the ETF dehydrogenase enzyme
[50–52]. The electron transport inhibition and the conse-
quent •OH and abnormal organic acid profile associated

with MADD may be involved in the side-effects which
individuals experience with TB treatment.
Treatment of MADD usually involves l-carnitine sup-

plementation [53–55], which, similar to melatonin, has

antioxidant properties [56, 57]. Melatonin, at the experi-
mental concentration used, lowered the overall organic acid
concentration significantly to levels where the elevated

organic acid levels relative to the control became nonsig-
nificant. This lowered organic acid profile may be ascribed
to the direct action of melatonin preventing electron

leakage from the mitochondria and preserving the integrity
of mitochondrial inner membrane [58]. In addition, mela-
tonin has a high redox potential and either accepts or
donates electrons, thereby promoting electron flow [58].

The increased •OH and organic acids associated with an
MADD metabolic profile suggests Rifater’s involvement in
the inhibition of the electron transport chain. This is further

substantiated by melatonin’s ameliorative effect on the
above-mentioned side-effects induced by Rifater. The
organic aciduria profiles suggest that the elevation of toxic

organic acids should be addressed in TB patient treatment,
as this could manifest a secondary disease situation which

could be alleviated by dietary intervention. Whether
oxidative stress is a primary factor in the pathogenesis of
TB needs to be established, but it may contribute consid-

erably to the pathology of the disease. Monitoring oxida-
tive stress is an important step towards protecting against
the damaging effect of free radicals and allows subsequent
changes in diets and, if necessary, the administration of

antioxidant supplementation.
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