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ARTICLE

Brain structural abnormalities in obesity: relation to age, genetic
risk, and common psychiatric disorders

Evidence through univariate and multivariate mega-analysis including 6420 participants from
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Abstract
Emerging evidence suggests that obesity impacts brain physiology at multiple levels. Here we aimed to clarify the
relationship between obesity and brain structure using structural MRI (n= 6420) and genetic data (n= 3907) from the
ENIGMA Major Depressive Disorder (MDD) working group. Obesity (BMI > 30) was significantly associated with cortical
and subcortical abnormalities in both mass-univariate and multivariate pattern recognition analyses independent of MDD
diagnosis. The most pronounced effects were found for associations between obesity and lower temporo-frontal cortical
thickness (maximum Cohen´s d (left fusiform gyrus)=−0.33). The observed regional distribution and effect size of cortical
thickness reductions in obesity revealed considerable similarities with corresponding patterns of lower cortical thickness in
previously published studies of neuropsychiatric disorders. A higher polygenic risk score for obesity significantly correlated
with lower occipital surface area. In addition, a significant age-by-obesity interaction on cortical thickness emerged driven
by lower thickness in older participants. Our findings suggest a neurobiological interaction between obesity and brain
structure under physiological and pathological brain conditions.

Introduction

With an estimated worldwide prevalence of 13% among the
adult population and up to 38% in western societies [1],
obesity is one of the greatest concerns to public health [2].
The role of obesity as a preventable cardiovascular risk
factor is well known, but research has only recently started
to explore the neurobiological underpinnings of obesity.

On a systemic level, neuroimaging research has identi-
fied structural [3–5] and functional [6–8] alterations in
obese participants—one of the most consistent findings is

These authors contributed equally: Bernhard T. Baune, Udo
Dannlowski

* Nils Opel
n_opel01@uni-muenster.de

Extended author information available on the last page of the article

Supplementary information The online version of this article (https://
doi.org/10.1038/s41380-020-0774-9) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-020-0774-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-020-0774-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-020-0774-9&domain=pdf
http://orcid.org/0000-0001-5164-8227
http://orcid.org/0000-0001-5164-8227
http://orcid.org/0000-0001-5164-8227
http://orcid.org/0000-0001-5164-8227
http://orcid.org/0000-0001-5164-8227
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-4505-8869
http://orcid.org/0000-0002-4505-8869
http://orcid.org/0000-0002-4505-8869
http://orcid.org/0000-0002-4505-8869
http://orcid.org/0000-0002-4505-8869
http://orcid.org/0000-0002-1135-4141
http://orcid.org/0000-0002-1135-4141
http://orcid.org/0000-0002-1135-4141
http://orcid.org/0000-0002-1135-4141
http://orcid.org/0000-0002-1135-4141
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0002-9403-6121
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0002-0540-8027
http://orcid.org/0000-0002-0540-8027
http://orcid.org/0000-0002-0540-8027
http://orcid.org/0000-0002-0540-8027
http://orcid.org/0000-0002-0540-8027
http://orcid.org/0000-0003-1431-3852
http://orcid.org/0000-0003-1431-3852
http://orcid.org/0000-0003-1431-3852
http://orcid.org/0000-0003-1431-3852
http://orcid.org/0000-0003-1431-3852
http://orcid.org/0000-0003-2429-0391
http://orcid.org/0000-0003-2429-0391
http://orcid.org/0000-0003-2429-0391
http://orcid.org/0000-0003-2429-0391
http://orcid.org/0000-0003-2429-0391
http://orcid.org/0000-0001-7183-8933
http://orcid.org/0000-0001-7183-8933
http://orcid.org/0000-0001-7183-8933
http://orcid.org/0000-0001-7183-8933
http://orcid.org/0000-0001-7183-8933
http://orcid.org/0000-0002-5146-0096
http://orcid.org/0000-0002-5146-0096
http://orcid.org/0000-0002-5146-0096
http://orcid.org/0000-0002-5146-0096
http://orcid.org/0000-0002-5146-0096
http://orcid.org/0000-0002-4961-296X
http://orcid.org/0000-0002-4961-296X
http://orcid.org/0000-0002-4961-296X
http://orcid.org/0000-0002-4961-296X
http://orcid.org/0000-0002-4961-296X
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0003-3209-9626
http://orcid.org/0000-0003-3209-9626
http://orcid.org/0000-0003-3209-9626
http://orcid.org/0000-0003-3209-9626
http://orcid.org/0000-0003-3209-9626
http://orcid.org/0000-0002-9149-8726
http://orcid.org/0000-0002-9149-8726
http://orcid.org/0000-0002-9149-8726
http://orcid.org/0000-0002-9149-8726
http://orcid.org/0000-0002-9149-8726
http://orcid.org/0000-0003-4401-8950
http://orcid.org/0000-0003-4401-8950
http://orcid.org/0000-0003-4401-8950
http://orcid.org/0000-0003-4401-8950
http://orcid.org/0000-0003-4401-8950
mailto:n_opel01@uni-muenster.de
https://doi.org/10.1038/s41380-020-0774-9
https://doi.org/10.1038/s41380-020-0774-9


decreased gray matter volume in obesity [3, 4, 9, 10]. A
recent UK Biobank study including data from n= 9652
participants supplemented this notion by showing an
inverse association between BMI and global gray matter
volume [11]. Further large-scale evidence for associations
between body weight and brain structure comes from a
recent meta-analysis of voxel-based morphometry studies
including data from n= 5882 subjects that pointed to con-
sistent associations between BMI and lower gray matter
volume in the medial prefrontal cortex, the bilateral cere-
bellum, and the left temporal pole [12]. However, even
though these well-powered studies provide robust evidence
for an association between BMI and brain structure in
general, the current understanding of the relationship
between obesity and brain structure is considerably limited
for several reasons.

First, the distribution and effect size of brain structural
abnormalities in obesity remains unclear. Several smaller
structural neuroimaging studies suggest that obesity might
primarily relate to gray matter reductions in brain areas
involved in reward processing and impulse regulation such
as the orbitofrontal cortex and the striatum [9, 13, 14]. Even
so, other reports question the hypothesis of regional specific
gray matter decrease in obesity by pointing to widespread
associations throughout the brain with diverging effects of
obesity on subcortical brain structure [4, 10]. Since prior
studies either exhibited limited power to detect subtle effects
in small samples or employed hypothesis-driven region of
interest approaches, the distribution or regional specificity of
obesity-related brain structural abnormalities remains
uncertain. Large-scale studies are needed that investigate
associations with obesity throughout the entire brain by
differentiating effects on subcortical volume and cortical
thickness and surface area. Furthermore, while the statistical
significance of obesity-related brain structural abnormalities
is well documented, the effect sizes and hence the potential
relevance of brain structural alterations in obesity remains
unknown. We aimed to address this issue by directly com-
paring profiles of obesity-related brain structural alterations
with findings from neuropsychiatric disorders. In addition
we aimed to complement group level analyses, by employ-
ing individual-level based pattern classification as a further
proxy for the robustness of neuroimaging findings [15].
Second, previous neuroimaging findings in obesity are lar-
gely based on studies in healthy participants. Yet, obesity
has frequently been associated with neuropsychiatric dis-
orders [16, 17] and more specifically previous research has
pointed to a bidirectional association between obesity and
major depression [18]. Furthermore, preliminary neuroima-
ging studies have reported overlapping brain structural
abnormalities in obesity and major depression [9, 12, 19].
It thus appears relevant to investigate if obesity-related brain
structural abnormalities might similarly be present under

physiological and pathological brain conditions. Against
this backdrop, the present study aimed to provide a well-
powered and comprehensive investigation of the relationship
between obesity and brain structural abnormalities in healthy
participants and depressive patients. A third major issue
concerns the relationship between brain structural abnorm-
alities in obesity and ageing. Interestingly, while obesity and
gray matter volume are frequently reported to be inversely
related in adult samples, the few studies of obesity-related
brain structural abnormalities in children and adolescents
have diverging results [13, 20, 21]. Thus, it is valuable to
investigate whether brain structural impairment in obesity is
already detectable in children and adolescents and if brain
structural abnormalities in obesity might vary as a function
of age. In addition, there may be a genetic contribution to
brain structural abnormalities in obesity, given the high
heritability of obesity in general [22] and the involvement of
multiple BMI-related genetic variants in brain physiology
[23]. Thus, the question of a potential genetic contribution to
brain structural abnormalities in obesity arises. To address
this, we combined individual polygenic risk profiles with
imaging data to investigate obesity and BMI-related brain
structural abnormalities [24, 25].

Methods

Participants

We studied BMI and neuroimaging data in a combined
sample of 6420 participants (mean age= 42.91, SD= 15.26;
56.95% female; mean BMI= 25.97, SD= 4.97) including
healthy controls (HC: n= 3519) and major depressive dis-
order patients (MDD: n= 2901) from 28 sites contributing to
the ENIGMA MDD working group [19, 26]. The sample
included n= 1223 obese participants (BMI > 30) as well as
n= 2917 normal weight participants (BMI 18.5–25) (Sup-
plementary Results, Supplementary Figs. 1, 2, 3, Supple-
mentary Tables 1, 2). All participating sites obtained approval
from local institutional review boards and ethics committees;
all study participants provided written informed consent.

Structural MRI methods

T1-weighted high-resolution anatomical brain images were
acquired for all participants and preprocessed locally using
FreeSurfer segmentation. Quality control was carried out at
each site according to protocols from the ENIGMA con-
sortium. Segmentation quality was assessed by visual
inspection and statistically evaluated for outliers with
a standardized protocol provided by the ENIGMA
consortium (http://enigma.ini.usc.edu/protocols/imaging-
protocols). Details of the imaging procedures for each
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cohort may be found in the Supplementary material (Sup-
plementary Table 3). All structural images were pre-
processed using the subcortical and cortical parcellation
stream of FreeSurfer with the default parameters [27]. As
we aimed to provide a comprehensive overview of obesity-
related brain structural alterations that would allow for
comparison with previous ENIGMA studies, all available
imaging measures were included for the presented analyses:
global measures included total intracranial volume, total left
and right cortical surface area, and average left and right
cortical thickness. Regional measures included subcortical
volumetric measures (8 left and 8 right), surface area (34
left and 34 right), and thickness measures (34 left and 34
right) for all cortical regions based on the Desikan–Killiany
atlas [28]. The presented morphometric data allowed us to
simultaneously investigate both subcortical and cortical
abnormalities and furthermore enabled us to examine
thickness and surface area separately which have been
shown to be driven by distinct genetic mechanisms and to
exhibit different developmental trajectories [29, 30].

Genetic methods

Genetic data were available for 3907 individuals from nine
contributing sites. Genotyping of these subjects was per-
formed at each contributing site using published protocols
(Supplementary Table 4). Polygenic risk scores (PRS) were
generated using sets of SNPs selected based on p value
thresholds at p= [0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9;
1.0] from the base GWAS data. The R program ‘PRSice'
[31]—which uses PLINK-1.9 [32] in the background for
linkage disequilibrium pruning—was used for this analysis
step. Standardized PRS values based on z-transformation
were used for all analyses (Supplementary Methods).

Statistical analyses

All univariate imaging analyses were carried out
using linear models in R, separately for each of the 157
available FreeSurfer derived imaging measures as a
dependent variable. Age, sex, MDD diagnosis, and site
were included as covariates in all models. For analyses of
subcortical volumes and surface area measures, ICV was
also included as covariate. For all univariate imaging
analyses, FDR correction for 157 tests was conducted
using the Benjamini Hochberg procedure with a false
discovery rate of q < 0.05.

To investigate associations between brain structure and
obesity, two main models were applied by including a
dichotomous predictor based on a BMI threshold (obese
subjects (BMI > 30) versus normal weight subjects (BMI
18.5–25) (Model A)) and furthermore by including BMI as
a continuous predictor (Model B).

Effect size estimates (Cohen´s d) were calculated based on
t-values and sample sizes [33] from the regression model
including the dichotomous BMI group (obesity versus nor-
mal weight) predictor (Model A) thus following a similar
methodology compared with previous studies on psychiatric
disorders from the ENIGMA consortium [19, 26]. To
investigate potential similarities between brain structural
alterations in obesity and common neuropsychiatric dis-
orders, we carried out correlational analyses between effect
size estimates (Cohen´s d) of thickness alterations in all
cortical regions in obesity with effect size estimates reported
in previous ENIGMA studies on MDD [19] and bipolar
disorder [34].

To further test our hypothesis of brain structural altera-
tions in obesity, we complemented the applied mass-
univariate testing approach by conducting pattern recogni-
tion analyses to investigate multivariate patterns of brain
structural differences between obese and normal weight
subjects. To this end, a machine learning pipeline consisting
of several preprocessing steps including imputation of
missing values, dimensionality reduction by principal
component analysis and random undersampling and a
support vector machine was trained on all available 157
FreeSurfer derived imaging measures to individually clas-
sify participants as either obese or normal weight using
pooled multisite nested cross-validation employing the
PHOTON framework (https://photon-ai.com; Supplemen-
tary Methods).

Furthermore, potential interaction effects of body weight
and age, sex and MDD diagnosis were carried out as
exploratory analyses. In addition, associations between
polygenic risk for obesity and brain structure were assessed
through univariate models as outlined above.

Results

Obesity and brain structure

Linear regression models including either obesity as
dichotomous predictor (Model A) or BMI as continuous
predictor (Model B) of brain structure yielded highly con-
sistent results (Supplementary Tables 5, 6, Supplementary
Fig. 4). Obesity was associated with lower cortical thick-
ness, with most pronounced and consistent associations
between obesity and lower cortical thickness in regions of
the temporal and frontal lobe (Table 1 and Fig. 1). Analyses
of regionally specific cortical surface area alterations in
obesity revealed both significantly lower and higher surface
area in obese subjects. Subcortical volumes were found to
be significantly increased in obese subjects—with most
pronounced volume increases in the amygdala, the thalamus
and the nucleus accumbens (Table 1).
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Table 1 FDR-corrected significant results for group differences between obese and normal weight subjects as assessed using separate linear
regression models with a dichotomous group predictor (obesity versus normal weight).

Label Estimate Std error T p FDR adjusted p Cohen´s d N Obese N NW

Global measures

Left hemispheral average thickness −0.021 0.003 −6.23 5.18E−10 <0.0001 −0.214 1200 2865

Right hemispheral average thickness −0.020 0.003 −5.89 4.18E−09 <0.0001 −0.203 1200 2865

Total Intracranial Volume −21634.000 5603.000 −3.86 1.10E−04 0.0005 −0.135 1168 2755

Total right hemispheral surface area −708.380 258.090 −2.74 6.08E−03 0.0165 −0.095 1189 2872

Total left hemispheral surface area −654.300 256.890 −2.55 1.09E−02 0.0281 −0.088 1189 2872

Cortical thickness

Left fusiform gyrus −0.051 0.005 −9.59 2.00E−16 <0.0001 −0.331 1195 2849

Right fusiform gyrus −0.050 0.005 −9.42 2.00E−16 <0.0001 −0.325 1193 2849

Right superior temporal gyrus −0.041 0.006 −7.17 9.09E−13 <0.0001 −0.251 1161 2745

Left superior temporal gyrus −0.040 0.006 −6.88 7.04E−12 <0.0001 −0.243 1138 2684

Left inferior temporal gyrus −0.040 0.006 −6.62 4.17E−11 <0.0001 −0.231 1165 2823

Left middle temporal gyrus −0.039 0.006 −6.46 1.18E−10 <0.0001 −0.227 1149 2748

Right middle temporal gyrus −0.036 0.006 −6.06 1.49E−09 <0.0001 −0.210 1184 2815

Right pars opercularis −0.033 0.006 −5.96 2.70E−09 <0.0001 −0.206 1189 2835

Right posterior cingulate cortex −0.033 0.006 −5.96 2.71E−09 <0.0001 −0.205 1196 2859

Right inferior temporal gyrus −0.036 0.006 −5.88 4.54E−09 <0.0001 −0.204 1175 2838

Left precentral gyrus −0.030 0.005 −5.85 5.27E−09 <0.0001 −0.202 1192 2837

Right precentral gyrus −0.030 0.005 −5.76 9.13E−09 <0.0001 −0.199 1188 2844

Right superior frontal gyrus −0.030 0.005 −5.76 8.93E−09 <0.0001 −0.199 1189 2859

Left transverse temporal gyrus −0.042 0.008 −5.29 1.26E−07 <0.0001 −0.182 1195 2853

Left insula −0.030 0.006 −5.17 2.41E−07 <0.0001 −0.179 1188 2811

Left posterior cingulate cortex −0.030 0.006 −5.16 2.56E−07 <0.0001 −0.178 1196 2857

Right medial orbitofrontal cortex −0.031 0.006 −5.12 3.18E−07 <0.0001 −0.177 1183 2831

Left banks of the superior temporal sulcus −0.031 0.006 −4.88 1.08E−06 <0.0001 −0.172 1139 2708

Left caudal middle frontal gyrus −0.026 0.005 −4.89 1.04E−06 <0.0001 −0.169 1196 2840

Right banks of the superior temporal sulcus −0.030 0.006 −4.63 3.81E−06 <0.0001 −0.161 1178 2796

Left entorhinal cortex −0.061 0.013 −4.5 6.86E−06 <0.0001 −0.158 1164 2725

Left paracentral lobule −0.024 0.005 −4.46 8.55E−06 <0.0001 −0.154 1195 2857

Right parahippocampal gyrus −0.044 0.010 −4.46 8.50E−06 <0.0001 −0.154 1192 2850

Left temporal pole −0.059 0.014 −4.38 1.20E−05 0.0001 −0.151 1187 2851

Left superior frontal gyrus −0.023 0.005 −4.35 1.36E−05 0.0001 −0.150 1194 2851

Left supramarginal gyrus −0.021 0.005 −4.15 3.45E−05 0.0002 −0.145 1173 2767

Right precuneus −0.019 0.005 −4.13 3.75E−05 0.0002 −0.142 1195 2848

Left pars opercularis −0.021 0.005 −4.03 5.58E−05 0.0003 −0.139 1194 2845

Right paracentral lobule −0.022 0.005 −3.94 8.38E−05 0.0004 −0.136 1196 2857

Right caudal middle frontal gyrus −0.020 0.005 −3.73 2.00E−04 0.0008 −0.129 1194 2845

Left isthmus cingulate cortex −0.026 0.007 −3.7 2.20E−04 0.0009 −0.128 1195 2852

Right lateral orbitofrontal cortex −0.022 0.006 −3.68 2.40E−04 0.0009 −0.127 1195 2858

Left precuneus −0.017 0.005 −3.66 2.60E−04 0.0010 −0.126 1189 2851

Right temporal pole −0.050 0.014 −3.58 3.40E−04 0.0012 −0.124 1191 2850

Left lateral orbitofrontal cortex −0.021 0.006 −3.56 3.70E−04 0.0013 −0.123 1188 2851

Right rostral middle frontal gyrus −0.017 0.005 −3.53 4.10E−04 0.0014 −0.122 1192 2849

Left inferior parietal cortex −0.017 0.005 −3.5 4.80E−04 0.0016 −0.121 1180 2831

Right insula −0.022 0.006 −3.46 5.40E−04 0.0018 −0.120 1182 2777

Right pars triangularis −0.020 0.006 −3.39 7.20E−04 0.0023 −0.117 1187 2838
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To rule out bias due to antidepressant medication
intake in the MDD group, analyses were repeated by
including current intake of antidepressant medication as
additional nuisance regressor. Regional specificity of
cortical thickness findings was assessed by conducting
additional analyses accounting for mean cortical thick-
ness. Highly similar results were observed in analyses
controlling for the presence of antidepressant medication
and in analyses adjusted for mean cortical thickness
(Supplementary Tables 7, 8). Consistent results were
observed in confirmatory analyses testing quadratic
effects of BMI, in analyses accounting for quadratic
effects of age and in analyses assessing the effect of
weight group by including normal weight, overweight and

obesity as categorial predictor (Supplementary Results
and Supplementary Tables 9–11, Supplementary Fig. 5).
Subsample analyses adjusting for head movement con-
firmed the overall pattern of results although obesity-
related brain structural abnormalities were attenuated in
these analyses (Supplementary Results and Supplemen-
tary Table 12, Supplementary Fig. 5).

Similar regional effect sizes for the association between
obesity and brain structural abnormalities in the left and
right hemisphere could be observed in the present study
(Supplementary Results), while descriptively larger effects
were observed for the association between obesity and
lower cortical thickness in the left compared with right
cortical hemisphere.

Table 1 (continued)

Label Estimate Std error T p FDR adjusted p Cohen´s d N Obese N NW

Right isthmus cingulate cortex −0.022 0.007 −3.18 1.50E−03 0.0045 −0.110 1196 2854

Right supramarginal gyrus −0.016 0.005 −3.18 1.50E−03 0.0045 −0.111 1178 2780

Left parahippocampal gyrus −0.035 0.011 −3.08 2.08E−03 0.0060 −0.106 1190 2850

Right transverse temporal gyrus −0.025 0.008 −3.05 2.30E−03 0.0066 −0.105 1190 2849

Left rostral middle frontal gyrus −0.014 0.005 −2.8 5.10E−03 0.0140 −0.097 1197 2848

Left rostral anterior cingulate cortex −0.023 0.009 −2.74 6.20E−03 0.0165 −0.095 1189 2835

Left medial orbitofrontal cortex −0.015 0.006 −2.51 1.22E−02 0.0309 −0.087 1182 2818

Left frontal pole −0.028 0.011 −2.49 1.28E−2 0.0313 −0.086 1199 2863

Right pars orbitalis −0.020 0.008 −2.5 1.26E−02 0.0313 −0.086 1198 2848

Left superior parietal cortex −0.010 0.004 −2.44 1.50E−02 0.0350 −0.084 1187 2831

Left pars orbitalis −0.019 0.008 −2.31 2.11E−02 0.0473 −0.080 1194 2854

Cortical surface area

Left isthmus cingulate cortex 25.900 5.492 4.72 2.50E−06 <0.0001 0.167 1134 2700

Right isthmus cingulate cortex 21.160 5.097 4.15 3.37E−05 0.0002 0.147 1137 2706

Left transverse temporal gyrus 10.183 2.603 3.91 9.32E−05 0.0004 0.138 1141 2708

Right rostral middle frontal gyrus −71.936 22.908 −3.14 1.70E−03 0.0050 −0.111 1135 2698

Right paracentral lobule 21.589 7.403 2.92 3.57E−03 0.0100 0.104 1117 2688

Left inferior temporal gyrus −40.910 15.209 −2.69 7.18E−03 0.0188 −0.096 1099 2673

Right inferior temporal gyrus −35.140 14.136 −2.49 1.30E−02 0.0313 −0.089 1115 2684

Left paracentral lobule 16.023 6.589 2.43 1.51E−02 0.0350 0.087 1099 2658

Left lingual gyrus −32.434 13.793 −2.35 1.88E−02 0.0428 −0.083 1128 2692

Subcortical volume

Right amygdala 41.656 6.984 5.96 2.68E−09 <0.0001 0.211 1129 2702

Left thalamus 108.695 26.117 4.16 3.23E−05 0.0002 0.147 1138 2691

Right thalamus 80.814 22.216 3.64 2.80E−04 0.0010 0.129 1134 2680

Left amygdala 22.444 6.474 3.47 5.30E−04 0.0018 0.123 1127 2694

Left nucleus accumbens 11.724 3.541 3.31 9.40E−04 0.0030 0.118 1110 2660

Right hippocampus 33.557 13.810 2.43 1.52E−02 0.0350 0.086 1136 2709

Results are displayed for global measures, cortical thickness, and surface area as well as for subcortical volumes and sorted by p value within each
domain. All results are adjusted for age, sex, MDD diagnosis, and site. Regional surface and subcortical results are adjusted for total intracranial
volume.

Estimate regression estimate, StdError standard error, T t-value, p uncorrected p value, FDR adjusted p FDR adjusted p value, N Obese number of
obese subjects included in analysis, N NW number of normal weight subjects included in analysis.
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Comparison of obesity-related brain structural
abnormalities with previous findings in
neuropsychiatric disorders

Correlational analyses of effect size estimates for thickness
of each cortical region of interest indicated similarities in
the relative distribution or pattern of cortical thickness
reductions across cortical regions between obesity and
MDD (r= 0.452) and obesity and bipolar disorder (r=
0.513) (Fig. 2). An additional sensitivity analysis revealed
that by contrast to the observed similarities between cortical
thickness in obesity and affective disorders, effect sizes for
obesity and previously published effect sizes for autism
spectrum disorder (ASD) [35] did not show a similar degree
of overlap (r= 0.149) (Supplementary Results). Further
analyses of the absolute extent of effect sizes for cortical
thickness indicated overall larger effect sizes in obesity
compared with MDD and ASD but lower effect sizes
compared with BD (Supplementary Results, Supplementary
Fig. 6).

Multivariate pattern recognition analyses

Multivariate pattern classification analyses further con-
firmed the relationship between obesity and brain structure
by yielding highly significant single-subject differentiation

between obese (BMI > 30, n= 1223) and normal weight
subjects (BMI 18.5–25, n= 2917) with a balanced accuracy
rate of 68.7% (BAC= 0.687, StD= 0.019, p < 0.001; sen-
sitivity= 0.695; specificity= 0.678; F1score= 0.565;
ROC-AUC= 0.687).

To rule out bias due to differing age, sex, and MDD
diagnosis distributions in obese versus normal weight sub-
jects, pattern recognition analyses were repeated in samples of
obese and normal weight subjects that were balanced for age,
sex, and MDD diagnosis using the pairmatch function in R
(nobese= 1223; nnormal weight= 1223). Similar results were
observed when analyses were performed in samples of obese
and normal weight subjects that were balanced for age, sex,
and MDD diagnosis (nobese= 1223; nnormal weight= 1223;
BAC= 0.641, StD= 0.014, p < 0.001; sensitivity= 0.666;
specificity= 0.617; F1score= 0.650; ROC-AUC= 0.641).

In addition, to demonstrate replicability across differing
cohorts and scanning sites, we performed pattern recogni-
tion analyses by employing leave-one-site-out cross-
validation. For this analysis step, only sites with a mini-
mum of 50 subjects per group were included, to avoid bias
due to lenient test sample sizes (nobese= 960; nnormal weight=
1616; k= 5 sites). Analyses employing leave-one-site-out-
cross-validation including all sites with a minimum n > 50
in each group yielded a lower but still highly significant
accuracy rate (nobese= 960; nnormal weight= 1616, k= 5 sites;

Fig. 1 Figure displaying effect sizes for the association between
obesity and cortical thickness on left hemispheral thickness. Col-
orbar displays effect size estimates (Cohen´s d) for differences in

cortical thickness between obese versus normal weight subjects; Bar
diagram depicts effect sizes for all cortical regions sorted by lobe.
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BAC= 0.595, StD= 0.018, p < 0.001; sensitivity= 0.714;
specificity= 0.476; F1score= 0.523; ROC-AUC= 0.595).

Supplementary analyses confirmed the predictive
relevance of brain regions associated with obesity in
the univariate analyses but also revealed that optimal
classifier performance was obtained in analyses including
the maximum of available brain structural features (see
Supplementary Results).

Moderating role of MDD diagnosis, age, and sex

To investigate if associations between BMI and brain
structure would significantly differ between MDD and HC
participants, interaction effects of BMI ×MDD diagnosis
were assessed based on linear models in analogy to Model
B thus comparing slopes of BMI ×MRI measure between
MDD and HC subjects. No FDR-corrected significant
interaction effect of BMI and MDD diagnosis was detected

(Supplementary Table 13). Similarly, analyses stratified by
diagnostic group confirmed our main result by yielding
significant associations between obesity and lower temporo-
frontal cortical thickness in both MDD and HC subjects
with descriptively larger effect sizes for obesity in MDD
compared with HC subjects (Supplementary Tables 14, 15,
Supplementary Fig. 7).

Similarly, a moderating role of sex was investigated by
assessing BMI × sex interaction effects. We observed FDR-
corrected significant interaction effects of sex and BMI on
cortical thickness, subcortical volumes, and surface area.
The most consistent finding was a significantly enhanced
BMI-related cortical thinning in male compared with female
subjects (Supplementary Table 16).

To investigate a potential moderating role of age on brain
structural alterations observed in obesity, linear models
building on Model A were fitted by also including the
obesity × age interaction term. FDR-corrected significant

Fig. 2 Effect size estimates (Cohen´s d) for differences in cortical
thickness between obese versus normal weight subjects in direct
comparison with previously published effect size estimates for
cortical thickness results in major depression (MDD) and bipolar
disorder (BD). a Plot depicting the positive correlation between effect

size estimates for thickness results in all cortical regions mapped to the
respective lobe between obesity and MDD (r= 0.452) and b between
obesity and BD (r= 0.513). c Bar diagram displaying effect size
estimates for cortical thickness results separately for all cortical
regions.
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interaction effects of obesity and age were observed on
cortical thickness of the left rostral middle frontal gyrus,
the left lateral orbitofrontal gyrus, the left pars orbitalis,
and triangularis of the inferior frontal gyrus driven by
significantly enhanced age-related thickness decrease in
obese compared with normal weight subjects. Further
significant obesity × age interaction effects were observed
for right hippocampal and left thalamic volume as well as
for surface area of the right precuneus (Supplementary
Table 17). Moreover, to investigate if brain structural
associations with BMI could be detected in adolescents,
regression analyses were repeated in the subgroup of
participants with an age <21 (n= 520). Due to the limited
prevalence of obesity in the adolescent subgroup (n= 51),
only models including BMI as continuous predictor
were conducted in the adolescent subgroup. Additional
subgroup analyses of associations between BMI and
brain structure in adolescent participants exclusively
revealed an FDR-corrected significant positive association
between BMI and volume of the right amygdala (B=
7.34, StdE= 1.72, t= 4.26, p= 0.00002, p(FDR) = 0.0038,
n= 503) (Supplementary Table 18), while no further
association reached FDR-corrected significance in this
subsample.

Polygenic risk for obesity and brain structure

All calculated PRS scores significantly predicted BMI with
proportions of explained variance (R2) ranging from 1.2 to
1.8% (n= 3907, all p < 0.00001; Supplementary Tables 19,
20). To assess the influence of polygenic risk for obesity on
brain structure, linear models were fitted (a) by including
the PRS based on information from all available SNPs as
predictor (p value threshold= 1.0) and (b) by employing
the polygenic score that explained most variance in BMI as
predictor (p value threshold= 0.2).

We observed an FDR-corrected significant negative
association between PRS(p1.0) and cortical surface area of
the left lateral occipital cortex (B=−45.92, StdE= 12.56,
t=−3.66, p= 0.00026, p(FDR)= 0.041, n= 3526) (Sup-
plementary Table 21). Analyses including the PRS(p0.2) as
predictor yielded a highly similar pattern of results with the
most pronounced association between polygenic risk and
surface area of the left lateral occipital surface area, which,
however, did not reach FDR-corrected significance (B=
−40.84, StdE= 11.52, t=−3.55, p= 0.0004, p(FDR)=
0.062, n= 3526) (Supplementary Table 22). In addition,
mediation analyses were performed to test if the association
between polygenic risk and BMI was mediated by left lat-
eral occipital surface area and other brain structures reported
previously [24]. While we did not observe a significant
mediation effect for left lateral occipital surface area, a
significant mediation effect of polygenic risk for obesity on

BMI through left lateral orbitofrontal thickness could be
detected (see Supplementary Results).

Discussion

In the present multisite study, we found that obesity sig-
nificantly associated with cortical and subcortical brain
structural abnormalities independent of MDD diagnosis in
both univariate and multivariate analyses. We further
demonstrate that the regional distribution and effect size of
the observed lower cortical thickness in obesity shows
considerable similarities with corresponding patterns of
cortical thickness alterations that have been described in
mental disorders. Similarly, the presence of differential age
dependent effects on brain structural measures in obesity—
as well as the observed influence of polygenic risk for
obesity on brain structure—offers novel insights of rele-
vance for future experimental research on the etiology of
obesity-related brain structural impairment.

The applied multisite design combined with a compre-
hensive neuroimaging approach allowed to differentiate
between obesity-related abnormalities in cortical thickness,
surface, and subcortical volume with unprecedented statis-
tical power and detail. Our findings clarify that lower
fronto-temporal cortical thickness constitutes the most
pronounced obesity-related brain structural abnormality
across the brain. This finding is supported by prior reports
on temporal and frontal cortical gray matter decrease in
obesity [4, 9, 10, 20, 24, 36].

Interestingly, while all significant associations between
BMI and cortical thickness were negative, differing direc-
tions of associations occurred with regard to surface area
alterations. This observation appears to match previously
reported differential regionally specific positive and nega-
tive associations between cortical thickness and surface area
[29, 37]. A previously discussed explanation for the inverse
relationship between cortical surface and thickness mea-
sures refers to a potential stretching of the cortical surface
area along the tangential axis due to intracortical myelina-
tion [37, 38]. Our finding of larger subcortical volumes in
obesity with strongest effects of greater amygdala, thalamic,
nucleus accumbens, and hippocampal volume finds support
in prior studies of obese subjects that applied a similar
volumetric imaging approach reporting larger amygdala,
thalamus, and hippocampal volumes [39, 40]. In contrast,
previous voxel-based morphometry studies reported nega-
tive associations between BMI and gray matter of sub-
cortical structures [10, 41]. The disparity between
volumetric and voxel-based findings has been directly
investigated in a recent report by Perlaki et al. suggesting
that BMI associates with higher amygdala and nucleus
accumbens volumes derived from FreeSurfer segmentations
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but with lower VBM based GM density in identical struc-
tures highlighting the relevance to distinguish GM density
from volume [13].

Importantly, we found that cortical thickness reductions
in obesity are of similar effect size to the previously
observed thickness reductions in several neuropsychiatric
disorders. More specifically, peak effect sizes for lower
cortical thickness in obesity (max. Cohen´s d (left fusiform
gyrus)=−0.331) exceeded previously reported peak effect
sizes for cortical thinning in MDD patients (max. Cohen´s d
(left medial orbitofrontal cortex)=−0.134) [19], adult
OCD patients (max Cohen´s d (right inferior parietal cor-
tex)=−0.140) [42], findings in specific substance depen-
dence (max Cohen´s d (right fusiform gyrus)=−0.094)
[43] and were comparable with peak effect sizes in bipolar
disorder (max Cohen´s d (left pars opercularis)=−0.293)
[34]. Results of our pattern classification analyses further
support the notion of a robust association between obesity
and brain structure by yielding sMRI-based single-subject
classification accuracies of up to 68.7% in pooled multisite
cross-validation. Of note, this level of accuracy is compar-
able with pattern classification results reported for the
detection of bipolar patients versus healthy controls using
similar methods (65.2% accuracy for support vector clas-
sifiers, trained on FreeSurfer segmentations using multisite
pooled cross-validation) [44]. Similar to previous reports of
accurate individual brain age prediction based on neuroa-
natomical data [45, 46], our findings highlight the impor-
tance to consider multivariate morphometric patterns related
to phenotypes such as age and body weight in future pattern
classification studies. Importantly, the presence of a multi-
variate pattern differentiating obese from normal weight
subjects could similarly be demonstrated in analyses con-
trolling for age, sex and MDD diagnosis and by transfer of
the classifier across cohorts using leave-one-site-out-cross-
validation in the present work which underlines the
robustness and the replicability of obesity-related brain
structural abnormalities across sites. In addition, the relative
distribution of obesity-related thickness reductions across
all brain regions with most pronounced effects on temporo-
frontal cortical regions revealed considerable similarities
with patterns of thickness reductions in major depression
[19] and bipolar disorder [34] while the absolute extent of
effect sizes across all regions in obesity was larger com-
pared with MDD but lower compared with BD. In sum,
these findings offer novel insights into shared brain struc-
tural abnormalities in obesity and affective disorders. In
light of the known bidirectional association between obesity
and affective disorders such as MDD [18], future studies
should investigate the potential clinical relevance of the
shared morphometric signature observed here.

Of note, no significant interaction of BMI and MDD
diagnosis on brain structure was observed in the present

work and similar obesity-related brain structural abnorm-
alities emerged in separate analyses in the HD and MDD
subsamples. We thus conclude that associations between
brain structure and BMI are not significantly altered by the
presence of depression. This is well in line with previous
findings reporting similar associations between BMI and
gray matter reductions in MDD patients and healthy sub-
jects alike and no evidence for interaction effects of body
weight and depression on brain structure [9, 47].

Furthermore, we observed that cortical thickness effects
of obesity were significantly moderated by age. This inter-
action was driven by enhanced reductions of obesity-related
cortical thickness with increasing age. Complementary to
this notion, the most pronounced and significant associa-
tions between brain structure and BMI in adolescents were
not observed in cortical regions but rather in the amygdala.
Yet, it is important to acknowledge that BMI was associated
with lower cortical thickness in adolescent participants but
might have failed to reach significance due to limited
sample size in this analysis (see Supplementary Results for
power analysis). Regarding a potential explanation for early
detectable amygdala volume increase in obesity, it appears
important to consider the relevance of the amygdala in
increased cue triggered learning [48] and Pavlovian con-
ditioning to hedonic food that represents a key mechanism
in future weight gain [49]. Importantly, the apparent dis-
crepancy in obesity between early detectable subcortical
volume increase on the one hand, and lower thickness with
increasing age on the other, raises questions regarding
potentially differing pathways behind the development
of brain structural alterations in obesity that should be
addressed by future experimental research.

The aforementioned notion of differing pathways
underlying brain structural abnormalities in obesity appears
to be further supplemented by the imaging genetic findings
of the present study. The regionally pronounced effect of
polygenic risk for obesity on lateral occipital surface area
was unexpected. Prior studies have implicated the lateral
occipital cortex in obesity [14, 50, 51], yet BMI was
negatively correlated with occipital surface area but failed to
reach significance in the present study (p(FDR)= 0.089).
Similarly, since no significant mediation effect of lateral
occipital surface area was observed in the association
between polygenic risk and BMI, the functional relevance
of this finding remains uncertain. In contrast, it appears
important to note that in the present study left lateral orbi-
tofrontal thickness mediated the association between poly-
genic risk and BMI which appears to replicate similar
findings in a previous VBM study [24]. The notion that the
influence of genetic risk for obesity on body weight might
be mediated through changes in brain physiology is further
supported by reports on high expression of obesity-related
genes in the central-nervous system [23, 52]. Previous
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reports on associations between food addiction and OFC
thickness [51] appear to further corroborate a model in
which prefrontal brain regions might influence eating
behavior and subsequent weight gain. However, results
from these analyses have to be interpreted with great cau-
tion and do not allow for causal interpretations due to the
cross-sectional design of the present study. Future studies
are needed to directly test this hypothesis in experimental,
longitudinal designs before form conclusions can be drawn.

Furthermore, it appears important to note that a large
proportion of variance in obesity-related brain structural
abnormalities could not be explained by genetic influence in
the present study. It thus appears crucial to consider that
increased body weight itself could contribute to brain struc-
tural abnormalities through mechanisms such as obesity-
related low-grade inflammation, kynurenine pathway activa-
tion, or neuroendocrine dysregulation [17, 53–55]. Another
previously hypothesized link between obesity and brain
structural abnormalities implies brain energy consumption
during childhood and subsequent development of obesity
[56], and hence points to educational interventions during
childhood as a preventive measure against obesity.

Finally, the rather unexpected finding of a moderating
role of sex on BMI-related cortical thickness decrease
should be acknowledged. In the present study, male subjects
exhibited significantly lower BMI-related cortical thickness
compared with female participants. The potential relevance
of this finding is highlighted by a previous PET study
reporting significantly lower metabolic brain age in female
compared with male subjects [57] and should be targeted by
future research.

The presented analysis has strengths and limitations.
Major strengths of the present work are the large sample
size including healthy participants and depressive patients
and the inclusion of imaging and genetic data. In addition,
the combination of univariate group-level and multivariate
machine learning techniques further highlighted the rele-
vance of the observed associations on single-subject level.
The most severe limitation of our study is the cross-
sectional design that prevents us from drawing causal
conclusions. Our interpretations with regard to the onset and
mechanisms behind brain structural abnormalities in obesity
need clarification from longitudinal research before firm
conclusions can be drawn. It furthermore appears important
to note that BMI was not accounted for in previous studies
on psychiatric disorders from the ENIGMA consortium.
Considering the known association between affective dis-
orders and obesity, the observed similarities between obe-
sity and affective disorders observed here might thus
partially be explained by higher BMI in the patient samples
of such studies. Moreover, we acknowledge that our study
sample is not independent from patient and control samples
of previous ENIGMA studies and therefore overlap in

participants might contribute to the similarities in brain
structural findings between obesity and affective disorders.

To conclude, the present findings demonstrate similar
associations between obesity and brain structural abnorm-
alities in healthy participants and depressive patients. Cor-
tical thickness reductions in the temporal and frontal cortex
were identified as the most consistent and pronounced
structural neuroimaging findings in adult obesity in the
present study. Future voxel-wise neuroimaging studies
capable of providing higher resolution should aim to further
delineate the precise regional distribution of obesity-related
gray matter decrease.

Results of the present study suggest that the distribution
and extent of obesity-related brain structural abnormalities
is comparable with findings in neuropsychiatric disorders.
This notion critically underlines the similarities in patterns
of impaired brain structural integrity between obesity and
common neuropsychiatric disorders and points to the rele-
vance of altered brain physiology in obesity that still
appears to be drastically underestimated in current research.
While neuropsychiatric disorders such as major depression
are widely considered to be disorders of the brain, obesity is
primarily considered as a cardiovascular risk factor in
research and clinical practice. As the brain structural cor-
relates of obesity exceed those of common neuropsychiatric
disorders such as MDD—in terms of affected regions and
effect size per region—the findings presented here should
urge clinicians and scientists to devote increased attention to
neurobiological characteristics of obesity. The association
of obesity with altered brain structural integrity in the pre-
sent study indicates the need for a paradigm shift in obesity
prevention and research.
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