Loading...
Thumbnail Image
Item

Rotavirus group A genotype circulation patterns across Kenya before and after nationwide vaccine introduction, 2010-2018

Mwanga, M.J.
Owor, B.E.
Ngama, M.H.
Njeru, R.
Gicheru, E.
Otieno, G.P.
Agoti, C.N.
Nokes, D.J.
Ochieng, J.B.
Ogwel, B.
Show 10 more
Abstract
Background: Kenya introduced the monovalent G1P [8] Rotarix® vaccine into the infant immunization schedule in July 2014. We examined trends in rotavirus group A (RVA) genotype distribution pre- (January 2010-June 2014) and post- (July 2014-December 2018) RVA vaccine introduction. Methods: Stool samples were collected from children aged < 13 years from four surveillance sites across Kenya: Kilifi County Hospital, Tabitha Clinic Nairobi, Lwak Mission Hospital, and Siaya County Referral Hospital (children aged < 5 years only). Samples were screened for RVA using enzyme linked immunosorbent assay (ELISA) and VP7 and VP4 genes sequenced to infer genotypes. Results: We genotyped 614 samples in pre-vaccine and 261 in post-vaccine introduction periods. During the pre-vaccine introduction period, the most frequent RVA genotypes were G1P [8] (45.8%), G8P [4] (15.8%), G9P [8] (13.2%), G2P [4] (7.0%) and G3P [6] (3.1%). In the post-vaccine introduction period, the most frequent genotypes were G1P [8] (52.1%), G2P [4] (20.7%) and G3P [8] (16.1%). Predominant genotypes varied by year and site in both pre and post-vaccine periods. Temporal genotype patterns showed an increase in prevalence of vaccine heterotypic genotypes, such as the commonly DS-1-like G2P [4] (7.0 to 20.7%, P < .001) and G3P [8] (1.3 to 16.1%, P < .001) genotypes in the post-vaccine introduction period. Additionally, we observed a decline in prevalence of genotypes G8P [4] (15.8 to 0.4%, P < .001) and G9P [8] (13.2 to 5.4%, P < .001) in the post-vaccine introduction period. Phylogenetic analysis of genotype G1P [8], revealed circulation of strains of lineages G1-I, G1-II and P [8]-1, P [8]-III and P [8]-IV. Considerable genetic diversity was observed between the pre and post-vaccine strains, evidenced by distinct clusters. Conclusion: Genotype prevalence varied from before to after vaccine introduction. Such observations emphasize the need for long-term surveillance to monitor vaccine impact. These changes may represent natural secular variation or possible immuno-epidemiological changes arising from the introduction of the vaccine. Full genome sequencing could provide insights into post-vaccine evolutionary pressures and antigenic diversity.
Description
Date
2020-07-13
Journal Title
Journal ISSN
Volume Title
Publisher
BMC
Research Projects
Organizational Units
Journal Issue
Keywords
Genotype , Kenya , Post-vaccine , Pre-vaccine , Rotavirus
Citation
Mwanga MJ, Owor BE, Ochieng JB, Ngama MH, Ogwel B, Onyango C, Juma J, Njeru R, Gicheru E, Otieno GP, Khagayi S, Agoti CN, Bigogo GM, Omore R, Addo OY, Mapaseka S, Tate JE, Parashar UD, Hunsperger E, Verani JR, Breiman RF, Nokes DJ. Rotavirus group A genotype circulation patterns across Kenya before and after nationwide vaccine introduction, 2010-2018. BMC Infect Dis. 2020 Jul 13;20(1):504. doi: 10.1186/s12879-020-05230-0.
Embedded videos