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Background.  Current estimates for causes of childhood deaths are mainly premised on modeling of vital registration and lim-
ited verbal autopsy data and generally only characterize the underlying cause of death (CoD). We investigated the potential of min-
imally invasive tissue sampling (MITS) for ascertaining the underlying and immediate CoD in children 1 month to 14 years of age.

Methods.  MITS included postmortem tissue biopsies of brain, liver, and lung for histopathology examination; microbial culture 
of blood, cerebrospinal fluid (CSF), liver, and lung samples; and molecular microbial testing on blood, CSF, lung, and rectal swabs. 
Each case was individually adjudicated for underlying, antecedent, and immediate CoD by an international multidisciplinary team 
of medical experts and coded using the International Classification of Diseases, Tenth Revision (ICD-10).

Results.  An underlying CoD was determined for 99% of 127 cases, leading causes being congenital malformations (18.9%), complica-
tions of prematurity (14.2%), human immunodeficiency virus/AIDS (12.6%), diarrheal disease (8.7%), acute respiratory infections (7.9%), 
injuries (7.9%), and malignancies (7.1%). The main immediate CoD was pneumonia, sepsis, and diarrhea in 33.9%, 19.7%, and 10.2% of 
cases, respectively. Infection-related deaths were either an underlying or immediate CoD in 78.0% of cases. Community-acquired pneu-
monia deaths (n = 32) were attributed to respiratory syncytial virus (21.9%), Pneumocystis jirovecii (18.8%), cytomegalovirus (15.6%), 
Klebsiella pneumoniae (15.6%), and Streptococcus pneumoniae (12.5%). Seventy-one percent of 24 sepsis deaths were hospital-acquired, 
mainly due to Acinetobacter baumannii (47.1%) and K. pneumoniae (35.3%). Sixty-two percent of cases were malnourished.

Conclusions.  MITS, coupled with antemortem clinical information, provides detailed insight into causes of childhood deaths 
that could be informative for prioritization of strategies aimed at reducing under-5 mortality.

Keywords.  child mortality; minimally invasive tissue sampling; pneumonia; diarrhea; South Africa.

Global mortality rates in children aged 28 days to 1 year and 
1–5  years have declined between 2000 and 2015 at an annu-
alized rate of 2.8% and 3.5%, respectively, including 4.4% and 
5.4% in respective age groups in sub-Saharan Africa [1, 2]. 
Current estimates on causes of under-5 childhood deaths are 
largely premised on modeling using vital registration data 

coupled with limited verbal autopsy data (approximately 1 per 
850 deaths) [3], exposure prevalence, and risk-attribution fac-
tors [3, 4]. Furthermore, the estimates on causes of childhood 
deaths are mainly focused on the underlying medical condi-
tion that likely led to the sequence of events resulting in death. 
This could undermine recognition of more immediate medical 
events that resulted in the death, which might otherwise be pre-
ventable or for which interventions can be developed. The cur-
rent dependency on verbal autopsy data, a nonspecific method 
for cause of death (CoD) attribution, argues for more objective 
and granular understanding of specific immediate causes of 
death in low- and middle-income countries (LMICs).

Complete diagnostic autopsy is the “gold standard” for ascer-
taining CoD, but is rarely undertaken in LMICs due to limited 
resources, cost constraints, and cultural and religious barriers 

mailto:madhis@rmpru.co.za?subject=
http://creativecommons.org/licenses/by/4.0/


S362  •  cid  2019:69  (Suppl 4)  •  Chawana et al

on acceptability [5, 6]. Minimally invasive tissue sampling 
(MITS), also known as minimally invasive autopsy, involves 
postmortem collection of fluid and solid tissue samples using 
biopsy needles. Community engagement studies have sug-
gested that MITS would be theoretically culturally acceptable in 
African and South Asian countries [6]. Furthermore, a valida-
tion study undertaken in Mozambique demonstrated moderate 
concordance (κ = 0.75) in CoD attribution between complete 
diagnostic autopsy and MITS in children >1 month of age [7].

We aimed to evaluate the acceptability and utility of MITS, 
as proof of concept, in ascertaining the causal pathway of death 
in children >1 month of age in an LMIC setting (Soweto, South 
Africa).

METHODS

Study Site and Population

The study was conducted from 29 June 2015 to 1 August 2016 
at Chris Hani Baragwanath Academic Hospital (CHBAH). 
Further details of the study site, including healthcare setting 
and human immunodeficiency virus (HIV) prevalence, are 
given in the companion manuscript on neonatal deaths, also 
published in this supplement [8]. Additionally, in South Africa, 
the Expanded Programme on Immunization includes pneumo-
coccal conjugate vaccine (PCV) and rotavirus vaccine that have 
been introduced since 2009, in addition to 8 other routinely ad-
ministered childhood vaccines [9].

Study Design and Procedures

In this prospective, observational study, deaths of children 
<14 years of age occurring in the medical and emergency depart-
ment of CHBAH, and those certified as dead upon arrival at the 
hospital, were identified through daily screening of death regis-
tries, excluding from 18 December 2015 to 3 January 2016 (va-
cation period). We initiated the study by initially only screening 
and enrolling deaths occurring in the general medical wards. The 
surveillance and enrollment of cases was expanded to include 
deaths occurring in the surgical burn unit (31 August 2015), he-
matology/oncology ward (16 September 2015), surgical wards 
(30 September 2015), and the nursery ward for care of stable very 
low-birth-weight infants (kangaroo-care facility; 7 October 2015). 
Details on the counseling and consenting processes are as detailed 
elsewhere in the companion paper on neonatal deaths [8].

We aimed to undertake MITS within 24 hours of death and 
excluded those cases in which the procedure could not be per-
formed within 72 hours. Corpses were kept in the hospital mor-
tuary at 4°C until retrieval for burial.

Minimally Invasive Tissue Sampling

Trained study staff (medical doctor or professional nurse as-
sisted by research assistants) undertook MITS as detailed else-
where in this supplement [8]. The testing algorithm for the 
collected samples was similar to that done in neonatal deaths, 

with the exception that molecular testing of blood samples 
using the FastTrack Diagnostics (FTD; Sliema, Malta) neo-
natal sepsis kit was not undertaken in the age group 1 month to 
14 years; and only the FTD Respiratory-33 panel kit was used 
on lung samples. Methods used for tissue histology processing 
are also described elsewhere in this supplement [8].

Determination of Cause of Death

The CoD attribution was based on consensus of an interna-
tional panel convened in South Africa from 26 March to 5 
April 2017 composed of pathologists, pediatricians, epidemi-
ologists, microbiologists, obstetricians, infectious disease spe-
cialists, and international coding and certification experts (the 
Determination of Cause of Death [DeCoDe] panel group is 
listed in the Acknowledgements). The panel, chaired by either 
Chris Wilson or Scott Dowell, deliberated on CoD attribution 
using the International Classification of Diseases, Tenth Revision 
(ICD-10) [10]. This included attributing a single underlying 
medical condition that likely initiated the sequence of events 
culminating in death, and the most proximal event (ie, imme-
diate cause) of death, if applicable. Also evaluated were any 
antecedent conditions in the casual pathway leading to death, 
and medical conditions considered to have a contributory role, 
but not directly involved in the causal pathway. Details on the 
working methods of the DeCoDe panel are described in the 
companion manuscript on causes of neonatal deaths [8]. The 
DeCoDe panel allowed for inclusion of two “immediate” CoD, 
where concurrent diseases could not be prioritized as the main 
condition that caused the death; for example, histologically 
confirmed Pneumocytis jirovecii and respiratory syncytial virus 
(RSV) pneumonitis being concurrently present (and attributed 
as the immediate CoD) in a child with underlying HIV infec-
tion (attributed as the underlying CoD).

The CoD was generally based on consensus, in the absence of 
which a majority viewpoint was used, and recorded according 
to World Health Organization (WHO) guidelines for death cer-
tification. In addition, CoD was stratified into first-level United 
Nations Inter-agency Group on Child Mortality Estimation 
(UN-IGME) categories [11]: group I  (an aggregation of com-
municable, maternal, perinatal, and nutritional conditions), 
group II (noncommunicable diseases), and group III (injuries).

Statistical Analysis

We stratified analyses to infants (1–11  months of age), chil-
dren (12–59 months of age), and older children (60 months to 
14 years of age). Descriptive statistics were calculated providing 
medians with interquartile ranges for continuous variables, and 
proportions for categorical variables. For select variables, dif-
ferences between the infants, children, and older children were 
tested using Kruskal-Wallis or Fisher exact test. Weight-for-age 
was calculated in Stata software using the UK WHO Preterm 
Growth Charts (version UKWHOpreterm) and UK WHO 
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Term Growth Charts (version UKWHOterm) for the preterm 
babies and children aged 0–20  years, respectively. Statistical 
analysis was done using Stata software version 15 (StataCorp, 
College Station, Texas).

Ethical Considerations

The University of the Witwatersrand Human Research Ethics 
Committee (number 150215) and the CHBAH Protocol Review 
Committee approved the study. Parents/legal guardians pro-
vided consent prior to any MITS study procedure.

RESULTS

There were 412 deaths among children aged 1 month to 14 years 
at CHBAH during the study period. Sixty percent (n = 247) of 
the deaths were screened for study participation, while 165 
(40%) cases were not screened mainly due to the timing of 
phasing in of enrollment in the nonmedical wards (Figure 1). 
Seven of the 247 (2.8%) screened cases were ineligible, and in 
19.2% cases the parents could not be contacted within 72 hours 

of death. Of the remaining 194 screened cases, 127 (65.5%) con-
sented to study participation, including 14 of 127 (11.0%) who 
were certified dead upon hospital arrival.

The median age of enrolled cases was 11  months; 52.8% 
were infants, 29.1% children, and 18.1% older children. The 
median time from hospital admission to death was 3.0  days. 
MITS sampling was done at a median of 20.2 (11.3–27.6) hours 
after death. Overall, 36.4% of cases were born to women living 
with HIV; however, only 12.8% of cases were confirmed to be 
HIV infected on postmortem HIV polymerase chain reaction 
testing. Overall, 62.4% of cases, including 71.7% of infants, were 
malnourished. Sixteen percent of cases had underlying congen-
ital abnormalities. Approximately 20% of the cases had been ad-
mitted for mechanical ventilation support in the intensive care 
unit (Table 1).

MITS Tissue Adequacy

For solid tissues, most tissue biopsy samples were graded as ad-
equate: 71.6% (n = 91) for left lung, 77.2% (n = 98) for right 
lung, 81.9% (n = 104) for brain, and 84.2% (n = 107) for liver; 
or as suboptimal: 8.7% (n = 11) for liver, 11% (n = 14) for brain, 
15.7% (n = 20) for right lung, and 19.7% (n = 25) for left lung. 
No target organ tissue was obtained in 5.5% (n  =  7) of liver, 
7.1% (n = 9) of right lung and brain, and 8.7% (n = 11) of left 
lung samples.

Cause of Death Attribution

Using the findings from the molecular testing, microbiology, 
and histopathology in addition to the antemortem clinical find-
ings, the DeCoDe panel assigned a CoD in 99% of cases. Details 
of the certainty of diagnoses for the different underlying CoD 
and immediate CoD categories are reported in Supplementary 
Tables 1 and 2. The DeCoDe panel was confident (level 1) for 
the majority of underlying (81.1%) and immediate CoD 
(77.2%) diagnoses. Overall, the UN-IGME categories for un-
derlying CoD were 55.1% due to communicable diseases, ma-
ternal, perinatal, and nutritional conditions (group 1), 36% due 
to noncommunicable diseases (group 2), and 8% due to injuries 
(group 3) (Tables 2 and 3; Figure 2). In group I, these included 
deaths attributed to underlying HIV/AIDS (22.9%), diarrheal 
disease (15.7%), acute respiratory infections (14.3%), and com-
plications of prematurity (14.2%).

Among cases with HIV as the underlying CoD (n = 16), infec-
tion was the immediate CoD in 15 (93.8%) cases, mainly from 
pneumonia and sepsis (n = 7 [43.8%] and n = 4 [25.0%], respec-
tively; Figure 3; Table 2). Similarly, infections were also the im-
mediate CoD in 83.3% of 18 deaths attributed to complications 
of prematurity as the underlying cause, also mainly due to pneu-
monia (n = 9 [50.0%]) or sepsis (n = 5 [27.8%]) (Figure 3; Table 2).

Among the 10 cases with acute respiratory infections as the 
underlying CoD, 8 deaths were due to the pneumonia caused 
by RSV (n = 2), Streptococcus pneumoniae (n = 2), Haemophilus 

Missed deaths:

Total childhood
Deaths:

Deaths ineligible

Not approached: Consent declined:

Figure 1.  Flow diagram showing death notifications at the Chris Hani 
Baragwanath Academic Hospital of children aged 1  month to 14  years, and 
screening and enrollment of cases into the minimally invasive tissue sampling study. 
aDeaths were missed because the initial surveillance was limited to the pediatric 
medical wards, high care unit, and casualty (emergency ward). The surveillance 
was later extended to the burns unit (on 31 August 2015), hematology/oncology 
ward (16 September 2015), surgical ward (30 September 2015), and the neonatal 
kangaroo-care nursing ward (7 October 2015) to capture all childhood deaths at the 
facility. bIneligible cases included a medico-legal death (n = 1), a case from outside 
Soweto (n = 1), those with no legal guardian (n = 2), and cases where both parents 
were minors (n = 3). cWe enrolled cases on all days, excluding weekends and public 
holidays, from 19 December 2015 to 2 January 2016, during which time 24 cases 
were not approached for consenting. Additionally, 4 children were buried at the 
time of contact and we could not contact the parents of 18 cases within 72 hours 
of death. dMost parents did not provide a reason for declining study participation 
(n = 51 [76.1%]). Reasons cited for nonparticipation included cultural reasons (n = 9 
[13.4%]), parental belief that they were aware of the cause of death (n = 3 [4.5%]), 
and parental feeling of the child already having suffered (n = 4 [6.0%]).

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz550#supplementary-data
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influenzae (n  =  1), Staphylococcus aureus (n  =  1), P.  jirovecii 
(n = 1), and influenza A virus (n = 1). Similarly, 10 of 11 (90.9%) 
deaths attributed to diarrhea as the underlying cause died as 
a consequence thereof, whereas 1 child died of community-
acquired Escherichia coli sepsis. The diarrhea deaths were due 
to enteroinvasive E. coli/Shigella (n = 4) and norovirus (n = 1), 
while in 6 cases no pathogen was identified. Details of other 
group 1 underlying CoD are outlined in Table 3 and included 
3 (2.4%) deaths due to tuberculosis, 2 (1.6%) due to hepatitis 
A, and 1 each from varicella and congenital rubella syndrome.

The majority of UN-IGME group II (n = 46) category deaths 
were attributed to congenital malformations (n = 24 [18.9% of 
overall deaths]) of which 70.8% were in infants and 25.0% in 
children (Table 3). The most frequent congenital abnormal-
ities were gastrointestinal malformations (37.5%), Trisomy-21 
(25%), and cardiovascular system malformations (25%) (Table 
3). Infections were also the dominant immediate CoD among 
cases with underlying congenital abnormalities, including 45.8% 
(n = 11) pneumonia, 20.8% (n = 5) sepsis, and 4.2% (n = 1) men-
ingitis (Figure 3; Table 2). Among these infection-related deaths 
(n = 17), 58.8% (n = 10) were community-associated, and 41.2% 
(n = 7) were hospital-acquired. Malignancies were diagnosed as 
an underlying CoD in 7.1% of case overall, and contributed to 
40.9% (19/43) of UN-IGME group II deaths (Table 2).

The majority of deaths classified as UN-IGME group III 
(n = 10) occurred in children (60%) and older children (30%). 

These included deaths from burns (n = 4 [40.0%]), poisoning 
(n  =  3 [30.0%]), foreign body asphyxiation (n  =  1 [10.0%]), 
drowning (n = 1 [10.0%]), and motor vehicle accident (n = 1 
[10.0%]) (Table 3). Among the group III deaths, hospital-
acquired infection was the immediate CoD in 40.0% of cases, 
and community-acquired infection in 10.0% (Figure 3; Table 2).

Overall Contribution of Infections Either as an Immediate or Underlying 
Cause of Death

Overall, infections were attributed as an underlying or imme-
diate cause in 78% (n = 99) of deaths. This included 48 of 127 
(37.8%) cases where infection was an underlying CoD, and 51 
cases where the underlying CoD was a noninfectious medical 
condition (64.6% of 79).

Pneumonia was the commonest infection-related CoD (44% 
[n  =  44/99]), 73% (n  =  32/44) of which were community-
associated and 27% (n  =  12/44) hospital-acquired (Table 4). 
Among community-associated pneumonia cases (n = 32), RSV 
was the most commonly implicated pathogen (21.9% [n = 7]) 
and occurred exclusively among infants, including 4 cases in 
children with a noninfectious underlying CoD. Other patho-
gens causing community-acquired pneumonia deaths were 
P. jirovecii (18.8% [n = 6]), including 3 in HIV-infected children 
and 3 in infants without HIV infection, 1 of whom had under-
lying cerebral palsy, another was HIV exposed; the third was 
HIV unexposed and nutritional status was unknown. Other 

Table 1.  Demographic Features of Childhood Deaths in Which Minimally Invasive Tissue Sampling Was Undertaken

Features

Total
Infants   

(1–11 mo)
Children   

(12–59 mo)
Older Children  

(≥60 mo)

(N = 127) (n = 67) (n = 37) (n = 23)

Median age at death, mo (IQR) 11.0 (2.6–26.9) 2.7 (1.8–5.7) 19.2 (13.7–26.5) 97.9 (77.1–105.2)

Male sex, No. (%) 64 (50.4) 31 (46.3) 22 (59.5) 11 (47.8)

HIV exposeda,b, no./No (%) 40/110 (36.4) 26/64 (40.6) 9/30 (30.0) 5/16 (31.3)

HIV infectedc, no./No (%) 16/125 (12.8) 9 (13.4) 3 (8.1) 4/21 (19.0)

Median weight, kg at admission (IQR) 5.1 (2.5–9.3) 2.8 (1.4–4.5) 8.7 (6–10) 17.3 (14.1–22.6)

Weight for aged z score < –2, no./No (%) 53/85 (62.4) 33/46 (71.7) 14/27 (51.9) 6/12 (50.0)

Median No. of days between admission and death (IQR) 3 (0–28) 7 (0–40) 1 (0–4) 5 (1–12)

Median time between death and MITS done, h 20.2 (11.3–27.6) 23.0 (14.3–28.2) 18.0 (7.0–24.1) 16.6 (11.7–28.0)

Congenital abnormalities presente, No. (%) 20 (15.7) 13 (19.4) 5 (13.5) 2 (8.7)

Mechanical ventilation support during hospitalizationf, no./No (%) 21/103 (20.4) 19/53 (35.9) 2/31 (6.5) 0/19 (0.0)

Days spent in ICUg (IQR) 32 (11–54) 32 (11–62) 19 (4–34) Not applicable

Time to death between ICU discharge and death, d 0 (0–1) 0 (0–1) 9 (0–18) Not applicable

Abbreviations: HIV, human immunodeficiency virus; ICU, intensive care unit; IQR, interquartile range; MITS, minimally invasive tissue sampling.
aHIV exposed includes children born to HIV-infected mothers or children who were HIV polymerase chain reaction negative but HIV enzyme-linked immunosorbent assay positive.
bHIV exposure could not be ascertained in 17 of the 127 cases.
cNo HIV result in 2 cases. One case was born to an HIV-uninfected woman and the HIV exposure status of the other case was unknown.
dUnited Kingdom (UK) World Health Organization (WHO) preterm and term growth charts were used to calculate z scores for the preterm babies and children 0–20 years, respectively.
eThe congenital malformations were identified from the case notes or during the MITS procedure. These included 6 cases of hydrocephalus (3 in infants, 1 in children, and 2 in older children), 
1 of which also had other additional malformations of Hirchsprung disease (1 infant). Three cases had Down syndrome (1 infant and 2 children); 2 cases had unspecified dysmorphic features 
including 1 with cleft palate (both infants); and 1 case each had exomphalos with jejunal atresia (infant), anorectal malformations (child), biliary atresia (child), duodenal atresia with patent 
ductus arteriosus (infant), jejunal atresia (infant), gastroschisis (infant), choanal atresia with patent ductus arteriosus (infant), spina bifida (child), and transposition of great vessels (child).
fThere were no records in 24 cases to identify whether the child received mechanical ventilation. Mechanical ventilation modalities included 8 cases that received continuous positive airway 
pressure (7 infants and 1 child), 7 positive end pressure (6 infants and 1 child), 4 unspecified ventilation type (4 infants), and 1 each of high-frequency oscillatory ventilation (1 infant) and 
intermittent positive-pressure ventilation (1 infant).
gMedian duration of stay for those children who were admitted to ICU.
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Table 2.  Underlying and Immediate Cause of Death Attribution in Infants (1–11 Months of Age), Children (12–59 Months of Age), and Older Children (60 
Months–14 Years of Age)

Global Burden of Disease Categorya Total (N = 127) Infants (n = 67) Children (n = 37) Older Children (n = 23)

Group I (communicable, maternal, perinatal, and nutritional conditions): 70 (55.1) 43 (64.2) 21 (56.8) 6 (26.1)

Acute respiratory infections 10 (7.9) 4 (6.0) 6 (16.2) 0 (0.0)

  Community-acquired pneumoniab 8 (6.3) 3 (4.5) 5 (13.5) 0 (0.0)

  Myocarditis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Rotavirus enteritisc 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Birth asphyxia and trauma 2 (1.6) 1 (1.5) 1 (2.7) 0 (0.0)

  Nosocomial pneumonia 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Hyperosmolality and hypernatremia 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

Diarrhea 11 (8.7) 6 (9.0) 4 (10.8) 1 (4.4)

  Gastroenteritis 10 (7.8) 6 (8.8) 4 (10.8) 0 (0.0)

  Sepsis 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

HIV/AIDS 16 (12.6) 9 (13.4) 4 (10.4) 3 (13.0)

  Community-acquired pneumonia 6 (4.7) 4 (6.0) 1 (2.7) 1 (4.4)

  Nosocomial-acquired pneumonia 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Community-acquired sepsis 2 (1.6) 2 (3.0) 0 (0.0) 0 (0.0)

  Nosocomial-acquired sepsis 2 (1.6) 2 (3.0) 0 (0.0) 0 (0.0)

  Gastroenteritis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Meningitis 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Encephalitis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Heart failure 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Miliary tuberculosis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Meningitis/encephalitis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Meningitis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Prematurity 18 (14.2) 18 (26.9) 0 (0.0) 0 (0.0)

  Community-acquired pneumonia 4 (3.2) 4 (7.5) 0 (0.0) 0 (0.0)

  Nosocomial-acquired pneumonia 5 (3.9) 5 (7.5) 0 (0.0) 0 (0.0)

  Community-acquired sepsis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Nosocomial-acquired sepsis 4 (3.2) 4 (6.0) 0 (0.0) 0 (0.0)

  Gastroenteritis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Intracranial hemorrhage 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Necrotizing enterocolitis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Acute interstitial pneumonitis (noninfective) 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

Sepsis 3 (2.4) 2 (3.0) 0 (0.0) 1 (4.4)

  Sepsis (all) 3 (2.4) 2 (3.0) 0 (0.0) 1 (4.4)

    Nosocomial sepsis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

Other Group Id: 9 (7.1) 3 (4.5) 5 (13.5) 1 (4.4)

  Community-acquired pneumonia 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Nosocomial-acquired sepsis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Pulmonary tuberculosis 2 (1.6) 1 (1.5) 1 (2.7) 0 (0.0)

  Meningitis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Encephalitis 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Viral hepatitis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Acute hepatic failure 2 (1.6) 1 (1.5) 1 (2.7) 0 (0.0)

Group II (noncommunicable diseases): 46 (36.2) 22 (32.8) 10 (27.0) 14 (60.9)

Congenital anomalies 24 (18.9) 17 (25.4) 6 (16.2) 1 (4.4)

  Community-acquired pneumonia 9 (7.1) 6 (10.0) 3 (8.1) 0 (0.0)

  Nosocomial-acquired pneumoniae 2 (1.6) 2 (3.0) 0 (0.0) 0 (0.0)

  Community-acquired sepsis 2 (1.6) 2 (3.0) 0 (0.0) 0 (0.0)

  Nosocomial-acquired sepsis 3 (2.4) 2 (3.0) 1 (2.7) 0 (0.0)

  Meningitis (nosocomial) 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Congenital malformation (tetralogy of Fallot) 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Gastrointestinal hemorrhage 2 (1.6) 1 (1.5) 1 (2.7) 0 (0.0)

  Hemorrhage, lung 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Congestive heart failuref 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Aspiration pneumonitis 2 (1.6) 0 (0.0) 1 (2.7) 1 (4.4)

Other Group II: 22 (17.3) 5 (7.5) 4 (10.8) 13 (56.5)
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organisms implicated in community-acquired pneumonia 
deaths included K.  pneumoniae (15.6% [n  =  5]), cytomegalo-
virus (CMV; 15.6% [n = 5]), influenza virus (12.5% [n = 4]), and 
S. pneumoniae (12.5% [n = 4]). Forty percent (n = 2/5) of CMV 
pneumonitis– and 25% (n = 1/4) of pneumococcal pneumonia–
attributed deaths were in HIV-infected children.

Klebsiella pneumoniae was the commonest (66.7% [n = 8/12]) 
pathogen causing hospital-acquired pneumonia deaths, and all 
cases had a noninfectious underlying CoD. Seventy-one percent 
(n = 17/24) of the sepsis-related deaths were hospital-acquired, 
most commonly due to Acinetobacter baumannii (47.1% 
[n = 8/17]), K. pneumoniae (35.3% [n = 6/17]), and S. aureus 
(17.6% [n = 3/17]). Among the 7 community-acquired sepsis 
deaths, E. coli accounted for 57.1% (n = 4/7) of cases and S. au-
reus for 14.3% (n = 1/7); no pathogen was identified in 2 cases 
(Table 4).

Of the 6 deaths due to meningitis as the immediate cause, 
4 were community-acquired (S.  pneumoniae; Neisseria 
meningitidis and S.  pneumoniae coinfection; E.  coli; and 
Mycobacterium tuberculosis); and 2 hospital-acquired cases 
were due to A.  baumannii and Candida albicans coinfection 
(n = 1) and E. coli (n = 1).

DISCUSSION

This pilot study demonstrates the value of MITS, interpreted 
with antemortem clinical data, in attributing highly specific 
causes of death in an LMIC setting where under-5 mortality 
rate (per 1000 live births) was estimated to be 53 in 2013 (un-
published data); compared to the national estimate of 42 per 
1000 in 2015 [2]. The DeCoDe panel, with generally high level 
of confidence, attributed an underlying and immediate CoD in 
nearly all (99%) cases. Furthermore, for deaths associated with 

Global Burden of Disease Categorya Total (N = 127) Infants (n = 67) Children (n = 37) Older Children (n = 23)

  Community-acquired pneumonia 4 (3.2) 2 (3.0) 0 (0.0) 2 (8.7)

  Nosocomial-acquired pneumonia 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Nosocomial-acquired sepsis 2 (1.6) 0 (0.0) 1 (2.7) 1 (4.4)

  Pulmonary mucormycosis 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Community-acquired meningitis 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Nosocomial-acquired meningitis 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Intracranial abscess 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Status epilepticus 1 (0.8) 0 (0. 0) 0 (0.0) 1 (4.4)

  Pulmonary embolism 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Heart failure 2 (1.6) 0 (0.0) 2 (5.4) 0 (0.0)

  Cerebral infarction 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Bronchiolitis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Acute respiratory distress syndrome 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Acute hepatic failure 2 (1.6) 1 (1.5) 0 (0.0) 1 (4.4)

  Kidney failure 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Misadventure during surgical/medical care 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

Group III (injuries): 10 (7.9) 1 (1.5) 6 (16.2) 3 (13.0)

Injuries 10 (7.9) 1 (1.5) 6 (16.2) 3 (13.0)

  Nosocomial-acquired pneumoniag 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Community-acquired sepsis 1 (0.8) 0 (0.0) 1 (2.7) 1 (4.4)

  Nosocomial-acquired sepsis 3 (2.4) 0 (0.0) 2 (5.4) 1 (4.4)

   Acute hepatic failure 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

   Asphyxiation 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

   Poisoning 2 (1.6) 1 (1.5) 0 (0.0) 1 (4.4)

   Drowning 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

Ill defined 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

Data are presented as No. (%). Main row headings indicate the underlying cause of death, with immediate causes of death below.

Abbreviation: HIV, human immunodeficiency virus. 
aCategorized according to the United Nations Inter-agency Group on Child Mortality Estimation classification categories [12].
bOne pneumonia case had HIV lymphoid interstitial pneumonitis as a coimmediate cause of death.
cThis case of rotavirus gastroenteritis also had a pneumonia as a coimmediate cause of death.
dThe underlying conditions in infants included neonatal jaundice from other hepatocellular damage (n = 1), pneumocystosis (n = 1), and tuberculosis (n = 1). The underlying conditions in 
children included hepatitis A with coma (n = 2), protein energy malnutrition, unspecified (n = 1), and tuberculosis (n = 2). The underlying condition in older children included chickenpox 
(varicella) (n = 1).
eOne case of nosocomial Pseudomonas pneumonia also had nosocomial Escherichia coli meningitis as a coimmediate cause of death; the immediate cause of death in this case is recorded 
as meningitis.
fThis case of congestive heart failure also had congenital hypoplasia and dysplasia of the lung as a coimmediate cause of death.
gThis case of nosocomial Staphylococcus aureus pneumonia also had nosocomial disseminated herpes simplex virus infection as a coimmediate cause of death.

Table 2.  Continued
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Table 3.  Underlying Cause of Death Categories and Specific Underlying Cause of Death Attribution in Infants (0–11 Months of Age), Children (12–59 
Months of Age), and Older Children (60 Months–14 Years of Age)

Global Burden of Disease Category

Total Infants Children Older Children

(N = 127) (n = 67) (n = 37) (n = 23)

Group I (communicable, maternal, perinatal, and nutritional conditions)a: 70 (55.1) 43 (64.2) 21 (56.8) 6 (26.1)

Acute respiratory infections 10 (7.9) 4 (6.0) 6 (16.2) 0 (0.0)

  Pneumonia 9 (7.1) 3 (4.5) 6 (16.2) 0 (0.0)

  Acute bronchiolitis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

Birth asphyxia and trauma 2 (1.6) 1 (1.5) 1 (2.7) 0 (0.0)

  Birth asphyxia, unspecified 2 (1.6) 1 (1.5) 1 (2.7) 0 (0.0)

Diarrhea 11 (8.7) 6 (9.0) 4 (10.8) 1 (4.4)

HIV/AIDS 16 (12.6) 9 (13.4) 4 (10.8) 3 (13.0)

  HIV disease 15 (11.8) 9 (13.4) 3 (8.1) 3 (13.0)

  HIV disease resulting in wasting syndrome 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Meningitis/encephalitis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Sepsis 3 (2.4) 2 (3.0) 0 (0.0) 1 (4.4)

Prematurity complications 18 (14.2) 18 (26.9) 0 (0.0) 0 (0.0)

Other Group I: 9 (7.1) 3 (4.5) 5 (13.5) 1 (4.4)

  Congenital rubella syndrome 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Chickenpox (varicella) 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Hepatitis A with coma 2 (1.6) 0 (0.0) 2 (5.4) 0 (0.0)

  Neonatal jaundice from other hepatocellular damage 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Pneumocystosis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Protein energy malnutrition, unspecified 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Tuberculosis 3 (2.4) 1 (1.5) 2 (5.4) 0 (0.0)

Group II (noncommunicable diseases)b: 46 (36.2) 22 (32.8) 10 (27.0) 14 (60.9)

Congenital anomalies 24 (18.9) 17 (25.4) 6 (16.2) 1 (4.4)

  Cardiovascular system abnormalitiesc 4 (3.1) 2 (3.0) 2 (5.4) 0 (0.0)

  Charge syndrome 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Chromosomal abnormality, unspecified 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Congenital hydrocephalus 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Congenital malformation syndromes predominantly affecting facial appearance 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Down syndrome, unspecified 6 (4.7) 5 (7.5) 1 (2.7) 0 (0.0)

  GI tract abnormalitiesd 9 (7.1) 7 (10.4) 2 (5.4) 0 (0.0)

  Spina bifida with hydrocephalus, unspecified 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Other Group II: 22 (17.3) 5 (7.5) 4 (10.8) 13 (56.5)

  Cerebral infarction 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Cerebral palsy 2 (1.6) 2 (3.0) 0 (0.0) 0 (0.0)

  Chronic kidney disease 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Coagulation defect (other) 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Fanconi anemia 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Epilepsy 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Galactosemia 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Inflammatory liver disease, unspecified 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Kidney failure, unspecified 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Malignanciese 9 (7.1) 2 (3.0) 2 (5.4) 5 (21.7)

  Mastoiditis, unspecified 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Metabolic disorder, unspecified 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Parvovirus cardiomyopathy 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Group III (injuries)f: 10 (7.9) 1 (1.5) 6 (16.2) 3 (13.0)

Injuries 10 (7.9) 1 (1.5) 6 (16.2) 3 (13.0)

  Asphyxiation 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Burns 4 (3.1) 0 (0.0) 4 (10.8) 0 (0.0)

  Drowning 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Motor vehicle accident (pedestrian) 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Organophosphate poisoning 2 (1.6) 0 (0.0) 1 (2.7) 1 (4.4)
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infection, a specific pathogen was identified in 96% of cases. 
Elucidating such granular information on the causes of death 
could be extremely useful for planning and prioritizing future 
interventions aimed to reduce childhood mortality, even when 
the underlying cause itself might not be preventable (eg, pre-
mature birth).

Notably, this pilot, proof-of-concept study was undertaken 
as a prelude to the multicountry Child Health and Mortality 
Prevention Surveillance (CHAMPS) program to establish the 
acceptability and added value of MITS in providing granular 
detail on the causes of childhood death [13]. The leading un-
derlying CoD among our study population were classified 

under UN-IGME group I, the most common of which were 
prematurity (28%), HIV/AIDS (20%), diarrheal disease (16%), 
and acute respiratory infections (16%). The respective national 
estimates for these conditions as underlying cause of death 
among South African children aged 1–59 months in 2015 were 
0.7%, 1.7%, 14.5%, and 12.6%, respectively [14, 15]. Caveats 
of comparing our study results to the national estimates on 
CoD include that deaths investigated in our study excluded 
deaths not presenting or occurring at the facility, as well as 
biases introduced from the phasing-in of enrollment in the dif-
ferent nonmedical wards at the hospital during the course of 
the study.

Figure 2.  Percentage of deaths based on the United Nations Inter-agency Group for Child Mortality Estimation underlying cause of death categories [12] in children aged 
1 month to 14 years in Soweto, South Africa. *Other underlying causes of death include sepsis, birth asphyxia and trauma, ill defined, meningitis/encephalitis. Abbreviation: 
HIV, human immunodeficiency virus.

Global Burden of Disease Category

Total Infants Children Older Children

(N = 127) (n = 67) (n = 37) (n = 23)

  Poisoning, drugs 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Ill definedg 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

Data are presented as No. (%). Main row headings indicate the underlying cause of death, with immediate causes of death below.

Abbreviations: GI, gastrointestinal; HIV, human immunodeficiency virus.
aCommunicable, maternal, perinatal, and nutritional conditions includes those conditions whose International Classification of Diseases, Tenth Revision (ICD-10) code is among the following: 
A00–B99, D50–D53, D64.9, E00–E02, E40–E64, G00–G09, H65–H66, J00–J22, J85, N30, N34, N390, N70–N73, O00–P96, U04 [12].
bNoncommunicable conditions are those conditions whose ICD-10 code falls into the any of the following codes: C00–C97, D00–D48, D55–D64 (exclude D64.9), D65–D89, E03–E34, 
E65–E88, F01–F99, G10–G98, H00–H61, H68–H93, I00–I99, J30–J84, J86–J98, K00–K92, L00–L98, M00–M99, N00–N28, N31–N32, N35–N64 (exclude N39.0), N75–N98, Q00–Q99 [12].
cCardiovascular system abnormalities included 1 case each of tetralogy of Fallot (infant), discordant ventriculoarterial connection (child), hypoplasia of aorta (child) and congenital malforma-
tion of the heart, unspecified (infant).
dThe GI tract abnormalities included 3 cases of atresia of bile ducts; 2 cases of congenital absence, atresia and stenosis of jejunum; and 1 case each of gastroschisis, Hirschsprung disease, 
congenital absence, atresia and stenosis of anus without fistula, and congenital absence, atresia and stenosis of duodenum. All these abnormalities were in the infant group except 2 cases 
of atresia of bile ducts (child).
eThe malignancies identified included 2 cases each of acute lymphoblastic leukemia (1 child and 1 older child) and acute myeloblastic leukemia (1 child and 1 older child); and 1 case each 
of benign neoplasm of unspecified adrenal gland (older child); Hodgkin lymphoma, unspecified (older child); non-Hodgkin lymphoma, unspecified (older child); Burkitt lymphoma (older child) 
and malignant neoplasm of brain, unspecified (infant).
fGroup III category includes all conditions whose ICD-10 code is included in V01–Y89 [12].
gIll-defined refers to a cause of death which could not be determined using the available evidence.

Table 2.  Continued
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Figure 3.  Underlying causes of death according to the United Nations Inter-agency Group for Child Mortality Estimation global burden of disease categories [12] and the 
proportion of the infections as the immediate cause of death (CoD) for the given underlying CoD categories. **Other immediate CoD (excluding pneumonia, sepsis, meningitis, 
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Consequently, differences in the percentage of deaths at-
tributed to prematurity and HIV/AIDS as the underlying CoD 
in our study, compared with the national modeled estimates, 
could be due to biased case enrollment in our study. Alternately, 
it could be reflective of inaccuracies in the current modeling 
approaches of CoD attribution. Interestingly, however, the pro-
portion of deaths attributed to diarrhea and acute respiratory 
infections as an underlying cause in our study mirrored those 
of the national estimates [1, 15]. Also, the percentage of deaths 
attributed to meningitis (1.6%) as an underlying cause in our 
study was similar to national estimates (1.5%), whereas the re-
spective figure for sepsis (2.4% in our study) as an underlying 
cause was higher than the national estimate (0.2%) [15].

Despite the above study limitation, our findings provide de-
tailed insight into the specific causes of death, which would 
otherwise mainly have been analyzed at the syndromic level. 
This included the dominant role of infections as either the im-
mediate or underlying CoD in children (78%), with specifically 
identified preventable or treatable organisms contributing to 
94% of HIV-related deaths and 90% of pneumonia deaths. The 
role of infections reflected here excludes those contributing to 
death as antecedent CoD, and their overall contribution is likely 
to be even greater when antecedent morbid conditions are con-
sidered. Also, notably, only a single death was attributed to se-
vere malnutrition as the underlying cause, although 62% of the 
children who died were categorized as malnourished.

In our setting where PCV was introduced into the public im-
munization program in 2009, RSV was the commonest path-
ogen implicated in respiratory deaths, albeit a limited number 
of pneumonia cases. This included deaths occurring in prema-
turely born infants, and children with underlying neoplasms 
and congenital malformations. Without postmortem investiga-
tion of these cases, the role of RSV and other pathogens impli-
cated in pneumonia-associated childhood deaths in our study 
would be underappreciated.

Significant progress has occurred in reducing mother-to-child 
HIV transmission in South Africa, as well as providing antiretro-
viral treatment to all HIV-infected children upon their diagnosis 
[16, 17]. Nonetheless, we observed pneumonia from P.  jirovecii 
(n = 6) and CMV (n = 5) as important causes of death in these 
children, similar to observations before antiretroviral treatment 
was standard of care in settings such as ours [18]. This observa-
tion suggests deficiencies in the current HIV treatment program 
in South Africa, where death from preventable causes such as 
P. jirovecii pneumonia is still prevalent in HIV-infected children. 
The findings indicate the utility of MITS in prompting a review of 
recommendations and practices to avoid these preventable deaths.

Analysis of the immediate CoD in our study also highlights 
the contribution of sepsis, which would largely be missed if 
focusing only on the underlying CoD [19]. Considering that 
death from sepsis is treatable, knowledge of the commonly im-
plicated pathogens as revealed by MITS could inform empiric 
antibiotic therapy and sensitize physicians to their important 
role in childhood death, including the role of hospital-acquired 
infections. In developing countries, Klebsiella species and 
S.  aureus have been attributed as important pathogens of 
hospital-acquired sepsis in infants [20–22]. Our study identi-
fied multidrug-resistant (data not shown) A. baumannii as the 
dominant (47.1%) pathogen causing hospital-acquired sepsis. 
The emerging dominance of multidrug-resistant Klebsiella spe-
cies and A. baumannii infections necessitates a review of em-
piric treatment of hospital-acquired infections in settings such 
as ours [23–27].

Congenital malformations (22.1%) were the leading under-
lying CoD among children 1–59 months of age (group II); the 
proportion is 11-fold higher than national estimates (2%) [15]. 
The difference might reflect biases in enrollment in our study 
or, conversely, underascertainment of underlying congenital ab-
normalities in current CoD modeling exercises. Nevertheless, 
MITS provided further insight that the majority of deaths in 
these children were also from treatable or preventable infec-
tions (73.9%), with only 21.7% of the deaths in this group at-
tributed directly to the underlying malformation.

Although MITS provided insight into the causal pathway of 
death in most cases, it might be of limited utility in attributing 
the underlying CoD in noncommunicable disease such as oc-
cult congenital malformations, which we mainly diagnosed 
based on antemortem clinical information. This highlights the 
need for a holistic approach in using all available information 
for fully characterizing the CoD in children. Another limitation 
of MITS, which systematically samples predefined anatomical 
regions, is that focal abnormalities could be missed. Also, al-
though we used molecular assays for identifying some organ-
isms, the interpretation thereof could be controversial in the 
absence of validating the significance of their presence. This 
was partly addressed in our study by interpreting the finding 
from the molecular and microbial culture tests, together with 
the clinical and histopathological results.

In conclusion, our pilot demonstrated that almost two-
thirds of screened parents approached for performing MITS 
on their deceased children consented to study participation. 
Furthermore, despite the study limitations, including the gen-
eralizability of the study findings, we demonstrate the utility of 
MITS in contributing to a granular understanding of the causal 

and diarrhea) includes other circulatory, hepatic failure, pulmonary tuberculosis, encephalitis, aspiration pneumonia, gastrointestinal hemorrhage, poisoning, hepatitis, pul-
monary mucormycosis, hyperosmolality, intracranial abscess, status epilepticus, pulmonary embolism, acute respiratory distress syndrome, acute interstitial pneumonitis, 
kidney failure, necrotizing enterocolitis, tetralogy of Fallot, hemorrhage from respiratory passage, sudden infant death syndrome, asphyxiation, drowning, and complications 
during surgery. Abbreviations: acq, acquired; HIV, human immunodeficiency virus.
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Table 4.  Pathogens Identified in Children in Whom the Immediate or Underlying Cause of Death Was Infection Related, Stratified by Disease Syndrome

Diagnosis and Pathogen Overall (N = 127) <12 mo (n = 67) 12–59 mo (n = 37) ≥60 mo (n = 23)

Community-associated pneumoniaa 32 (25.2) 20 (29.9) 10 (27.0) 2 (8.7)

  RSV 7 (5.5) 7 (10.5) 0 (0.0) 0 (0.0)

  Pneumocystis jirovecii 6 (4.7) 6 (9.0) 0 (0.0) 0 (0.0)

  CMV 5 (3.9) 5 (7.5) 0 (0.0) 0 (0.0)

  Klebsiella pneumoniae 5 (3.9) 3 (4.5) 2 (5.4) 0 (0.0)

  Influenza virus 4 (3.1) 1 (1.5) 2 (5.4) 1 (4.4)

  Streptococcus pneumoniae 4 (3.1) 0 (0.0) 4 (10.8) 0 (0.0)

  Moraxella catarrhalis 3 (2.4) 1 (1.5) 2 (5.4) 0 (0.0)

  Haemophilus influenzae 3 (2.4) 0 (0.0) 3 (8.1) 0 (0.0)

   Bordetella pertussis 2 (1.6) 2 (3.0) 0 (0.0) 0 (0.0)

  Pseudomonas aeruginosa 2 (1.6) 1 (1.5) 1 (2.7) 0 (0.0)

  Staphylococcus aureus 2 (1.6) 1 (1.5) 1 (2.7) 0 (0.0)

  HMPV 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Streptococcus spp (other) 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Unspecified 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

Nosocomial pneumoniab 12 (9.4) 9 (13.4) 3 (8.1) 0 (0.0)

  K. pneumoniae 8 (6.3) 6 (9.0) 2 (5.4) 0 (0.0)

  S. aureus 2 (1.6) 1 (1.5) 1 (2.7) 0 (0.00)

  Acinetobacter baumannii 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  HMPV 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  P. aeruginosa 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  RSV 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

Community-associated sepsis 7 (5.5) 4 (6.0) 1 (2.7) 2 (8.7)

  Escherichia coli 4 (3.1) 2 (3.0) 1 (2.7) 1 (4.4)

  S. aureus 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Unspecified 2 (1.6) 2 (3.0) 0 (0.0) 0 (0.0)

Nosocomial sepsisc 17 (13.4) 9 (13.4) 5 (13.5) 3 (13.1)

  A. baumannii 8 (6.3) 5 (7.5) 2 (5.4) 1 (4.4)

  K. pneumoniae 6 (4.7) 3 (4.5) 2 (5.4) 1 (4.4)

  S. aureus 3 (2.4) 1 (1.5) 2 (5.4) 0 (0.0)

  E. coli 2 (1.6) 2 (3.0) 0 (0.00) 0 (0.0)

  Candida parapsilosis 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Clostridium spp 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Enterococcus faecalis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  P. aeruginosa 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Gastroenteritis 14 (11.0) 8 (11.9) 5 (13.5) 1 (4.4)

  Salmonella 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

  Enteroinvasive E. coli/Shigellad 4 (3.1) 1 (1.5) 2 (5.4) 1 (4.4)

  Rotavirus enteritise 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

  Norovirus 2 (1.6) 2 (3.0) 0 (0.00) 0 (0.00)

  No pathogen attributed 6 (4.7) 4 (6.0) 2 (5.4) 0 (0.0)

Community-associated meningitisf 4 (3.1) 0 (0.0) 2 (5.4) 2 (8.7)

  S. pneumoniae 2 (1.6) 0 (0.0) 1 (2.7) 1 (4.4)

  E. coli 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Neisseria meningitidis 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Mycobacterium tuberculosis 1 (0.8) 0 (0.0) 1 (2.7) 0 (0.0)

Nosocomial meningitisg 2 (1.6) 1 (1.5) 0 (0.0) 1 (4.4)

  A. baumannii 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  Candida albicans 1 (0.8) 0 (0.0) 0 (0.0) 1 (4.4)

  E. coli 1 (0.8) 1 (1.5) 0 (0.0) 0 (0.0)

Other infection 4 (3.1) 3 (34.5) 1 (2.7) 0 (0.0)

  CMVh 2 (1.6) 2 (3.0) 0 (0.0) 0 (0.0)
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pathway of death in children. Future studies, such as CHAMPS 
[13], which are designed to be more generalizable to the studied 
populations, would help inform the prioritization of interven-
tions and research that is required toward achieving the UN 
Sustainable Development Goal 3.2 target of reducing under-5 
childhood death rates (per 1000 live births) from 39.1 in 2017 
to 25 by 2030.
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