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Abstract
Designing small molecule-based new drug candidates through structure modulation of the existing drugs has drawn con-
siderable attention in view of inevitable emergence of resistance. A new series of isoniazid–pyrimidine conjugates were 
synthesized in good yields and evaluated for antitubercular activity against the H37Rv strain of Mycobacterium tuberculosis 
using the microplate Alamar Blue assay. Structure–anti-TB relationship profile revealed that conjugates 8a and 8c bearing 
a phenyl group at C-6 of pyrimidine scaffold were most active (MIC99 10 µM) and least cytotoxic members of the series. 
In silico docking of 8a in the active site of bovine lactoperoxidase as well as a cytochrome C peroxidase mutant N184R 
Y36A revealed favorable interactions similar to the heme enzyme catalase peroxidase (KatG) that activates isoniazid. This 
investigation suggests a rationale for further work on this promising series of antitubercular agents.
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Multidrug-resistant diseases constitute a public health crisis 
and a dastardly curse on humanity as the resistance to the 
most first-line drugs poses a serious challenge to the health 
security, especially of the weaker section of population [1]. 
The situation exacerbates when the disease is communicable 
and is asymptomatic during the initial phase, which often 
delays onset of active treatment only to result in transmission 
to others [2]. Tuberculosis (TB) is a contagious, infectious 
disease caused by bacteria (Mycobacterium tuberculosis) 
and is one of the major causes of death worldwide [3, 4]. In 
2017 only, at least 1.6 million (including 0.3 million HIV 
positive) people died from this disease. As per the estimate 
of the World Health Organization (WHO) [5], there were 
558,000 new cases of multidrug-resistant TB (MDR-TB) 
with resistance to the most effective rifampicin. While “end 
of TB” as an epidemic remains an aspiration, the initiatives 
of the sustainable development goals (SDG) to end TB by 
2030 needs to be supported to make it a reality [6, 7]. In this 
direction, repurposing of existing drugs [8], derivatization of 
the existing drugs [9] and screening libraries of new chemi-
cal entities [10] to find novel compounds, which could act 
through different mechanisms against the TB bacterium, and 
design of new drugs [11, 12] that can shorten and improve 
TB treatment are the mainstay approaches used for finding 
drug leads. Molecular hybrids [13, 14], obtained by covalent 
linking of two different pharmacophores, offer advantages 
in terms of solubility and efficiency in formulation/delivery 
and circumvent limitations of single drug or combination 
therapy. Such drugs which promise dual mode of action are 
expected to avoid/delay emergence of drug resistance.

Isoniazid (INH 1, Fig. 1) [15] is one of the most effective 
first-line anti-TB drugs, which is generally administered in 
combination with rifampicin, pyrazinamide or ethambutol. 
However, undesirable drug interactions in the combination, 

mismatched pharmacokinetics and pharmacodynamics, 
length of the therapy and side effects such as hepatotoxicity 
constitute some of the key limitations [16, 17]. However, 
the use of anti-TB molecular hybrids [18] (2, Fig. 1) based 
on INH as one of the hybrid partners has been reported to 
not only exhibit good anti-TB activity, but also circumvent 
several limitations of the combination therapy. Meanwhile, 
pyrimidines have reasonably broad spectrum of pharmaco-
logical activities such as antimalarial [19–23], anti-AIDS 
[24, 25], antinociceptive [26, 27], antifungal [28, 29], anti-
cancer [30, 31] as well as antitubercular [32–34]. Some of 
the molecular hybrids using pyridine sub-unit (3,4) [35, 36] 
with good anti-TB activity are shown in Fig. 1. We hypoth-
esized elaborating structure of INH by linking INH with 
pyrimidines to obtain small molecular conjugates would 
not only provide new molecular hybrids, but also provide 
an opportunity to evaluate their structure-dependent anti-
TB activity. Using the design strategy shown in Fig. 2, we 
synthesized a series of compounds and evaluated their anti-
TB activity against H37Rv strains of M. tuberculosis using 
the microplate Alamar Blue assay (MABA) and deduced 
their structure–activity relationship profile. Additionally, 
we have assayed the cytotoxicity of selected hybrids against 
the mammalian Vero cell line. We also performed in silico 
molecular docking of the most active compound in the active 
sites of bovine lactoperoxidase (PDB ID: 3I6N) as well as a 
cytochrome C peroxidase (PDB ID: 2V2E) mutant N184R 
Y36A to understand their binding patterns.

The INH–pyrimidine conjugates were synthesized using 
the protocol outlined in Scheme 1. The precursor alkyl 
6-methyl/phenyl-2-oxo-4-substituted-1,2,3,4-tetrahydropy-

Fig. 1   Structures of isoniazid (INH, 1) and molecular hybrids: based 
on INH (2), and pyrimidine core (3,4)

Contributor
towards activity
and binding with
target

Modulator of 
Activity and 
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binding
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Fig. 2   Design strategy of INH–pyrimidine conjugates and structure–
property indicators

Scheme 1   Synthesis of INH–pyrimidine conjugates 8a–j 



Molecular Diversity	

1 3

rimidine-5-carboxylates 5a–j were prepared through HCl 
or polyphosphate ester (PPE)-catalyzed three-component 
Biginelli condensation [37–43] of an alkyl acetoacetic ester, 
urea and appropriate aldehyde in anhydrous EtOH. Oxida-
tion of 5a–j using nitric acid (aqueous 70% v/v) readily 
furnished the corresponding alkyl 6-methyl/phenyl-2-oxo-
4-substituted-1,2-dihydropyrimidine-5-carboxylates 6a–j. 
Chlorination of 6a–j with phosphorous oxychloride (POCl3) 
yielded the corresponding alkyl 2-chloro-4-methyl/phenyl-
6-substituted pyrimidine-5-carboxylate 7a–j. Nucleophilic 
substitution reaction of 7a–j with 1 (prepared from the com-
mercially available 4-cyanopyridine and hydrazine hydrate) 
gave alkyl 4-methyl/phenyl-2-(2-isonicotinoylhydrazinyl)-
6-substituted pyrimidine-5-carboxylates 8a–j (INH–pyrimi-
dine conjugates) in 84–96% yield (Table 1). Structures of 
5–8 were unambiguously established on the basis of spectral 
(1H NMR, 13C NMR, MS, FTIR) data as well as microana-
lytical analysis (See Supporting Information).

Isoniazid 1 exerts its anti-TB activity by inhibiting the 
synthesis of mycolic acid, which is one of the essential 
chemical pathways for the formation of the mycobacterial 

cell wall in M. tuberculosis bacterium. In the current design 
of conjugates (Fig. 2), it was expected that the structure 
modification of 1 may influence the physicochemical prop-
erties such as lipophilicity and/or diffusion through the 
lipid-rich bacterial cell wall and modulate the binding of 
these conjugates in the binding domain of biological targets 
and exert anti-TB activity. The designed INH–pyrimidine 
conjugates 8a–j indeed showed high lipophilicity (cLogP: 
0.04–2.39; Table 1) relative to INH as well as favorable 
binding interactions similar to heme (ferric) enzyme catalase 
peroxidase (KatG) endogenous to M. tuberculosis.

Conjugates 8a–j were tested for in vitro antitubercular 
activity against H37Rv strains of M. tuberculosis using the 
MABA assay and depicted (Table 1) good to moderate 
activity in µM range, although the activity was less than the 
standard drugs viz. 1, rifampicin (RIF) and kanamycin. Cor-
relating anti-TB activity with structure of these conjugates 
revealed interesting trends. Replacing the C-5 ethyl ester 
of 8b [MIC99 40 µM] with methyl (8a) or isopropyl ester 
(8c) [8a = 8c: MIC99 10 µM] (Entries 1–3, Table 1) led to 
an increase in antitubercular activity. Similarly, when the 

Table 1   Structure of 5–8, 
in vitro antitubercular activity 
and cytotoxicity of INH–
pyrimidine conjugates 8a–j and 
reference drugs

a Calculated from Chem draw Ultra 11.0; bMean of three observations; cMIC99 (μM) at day 14 in GAST/
Fe with H37Rv (microplate Alamar Blue); d50% cytotoxic concentration (Vero cell lines); eSI is the ratio 
of cytotoxicity (IC50 in μM) to MIC99 (in vitro activity against M. tuberculosis H37Rv) expressed in μM; 
nd—not determined; fSee below

Entry Structure (Scheme 1) 8a–j

5–8 R1 R2 R3 Yield (%) CLogPa MIC99 (μM)b,c IC50 (μM)b,d SIe

1 a Me Ph Me 88 1.55 10 > 275 > 27.5
2 b Et Ph Me 92 2.08 40 > 265 > 6.6
3 c iso-Pr Ph Me 84 2.39 10 > 255 > 25.5
4 d Et Me Ph 90 2.08 > 160 nd nd
5 e Me Me Me 95 0.04 > 160 nd nd
6 f Et Me Me 96 0.48 40 nd nd
7 g Et p-F(C6H4) Me 95 2.23 40 nd nd
8 h Et p-MeO(C6H4) Me 90 2.12 > 160 > 245 > 1.53
9 i iso-Pr m-NO2(C6H4) Me 86 2.14 40 nd nd
10 j iso-Pr p-NO2(C6H4) Me 92 2.14 80 nd nd
11 1 (Figure 1) – − 0.66 0.1423 729 5123
12 RIFf – – − 0.67 0.009 – –
13 9f – – − 5.2 1.340 – –
14 10f – – – – 0.12 –
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phenyl substituent at the C-6 position of the pyrimidine core 
of the compounds 8a/8b was replaced with a methyl group, 
while a decrease in antitubercular activity of the resultant 
derivative 8e was observed (Entry 5, Table 1) compared 
to the former, the activity of 8f was similar to that of 8b. 
Switching the substituents at C-4 and C-6 positions of 8d 
to make 8b showed a fourfold increase in activity (Table 1). 
We further incorporated differently substituted (p-fluoro/p-
methoxy/m-/p-nitro) aryl substituents at C-6 position of the 
pyrimidine ring (Table 1). Thus, compared to 8b, introduc-
tion of a p-fluoro group in 8g (Entry 7, Table 1) did not show 
change in activity, a p-methoxy substituent led to a fourfold 
decrease (Table 1). Likewise, compared to 8c, one of the 
most active members of the series, introducing a m-nitro-
phenyl (8i) or p-nitro phenyl (8j) substituents at C-6 position 
of the pyrimidine core resulted in, respectively, two- and 
fourfold decrease in the antitubercular activity, while their 
activity was significantly superior to 8h (Entry 8, Table 1). 
Among the nitro-substituted conjugates, the m-nitrophenyl-
substituted 8i (MIC99 40 µM) was twofold more active than 
the corresponding p-nitrophenyl-substituted 8j (MIC99 
80 µM). This brief structure–antitubercular activity profile 
suggested that the variation of substituents at C-4 and C-6 
positions of pyrimidine moiety modulates the antitubercular 
activity of these conjugates. Cytotoxicity of selected com-
pounds was assayed against mammalian Vero cell line using 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbro-
mide (MTT)-assay. The IC50 values were in μM concentra-
tion and are summarized in Table 1. The cytotoxicity data 
revealed that the most potent compounds (8a and 8c) are 
fairly non-toxic (Table 1) and also less cytotoxic than refer-
ence drug Emetine, although the cytotoxicity of the hybrids 
was greater than 1. The ratios between cytotoxicity (IC50 in 
μM) and in vitro antitubercular activity (MIC in μM) ena-
bled the determination of selectivity index (SI). The com-
pounds that exhibited SI values greater than 10 are consid-
ered non-toxic. Comparison of the selectivity index of potent 
compounds also suggested that hybrids 8a and 8c had higher 
SI values and were less cytotoxic. Thus, although none of 
these conjugates was more active than the parent 1, more 
structure diversification may lead to the refinement of the 
molecular design and the attendant antitubercular activity.

The prodrug INH is activated by the heme (ferric) 
enzyme catalase peroxidase (KatG) endogenous to M. 
tuberculosis. Specifically, upon activation with KatG, INH 
is transformed into a potent antimycobacterial intermedi-
ate, which in combination with NADH forms an adduct 
[44], which inhibits inhA (2-trans-enoyl-acyl carrier pro-
tein reductase) of M. tuberculosis. This leads to inhibition 
of synthesis of mycolic acid, a major lipid of the bacterial 
cell wall. However, the mechanism of activation is poorly 
understood, partly because the binding interaction has not 
been properly established. At the same time, mutation in 

KatG of M. tuberculosis is reported to be a major factor 
of INH resistance. Consequently, most drug-resistant M. 
tuberculosis strains are resistant to INH. Literature reports 
[45] that INH is activated by mammalian lactoperoxidase 
and mycobacterium KatG. Consequently, in this study, using 
Schrodinger, LLC, New York, NY, 2019, we have conducted 
docking studies of the most active member 8a of the series 
with bovine lactoperoxidase (PDB ID: 3I6N) as well as a 
cytochrome C peroxidase (PDB ID: 2V2E) mutant N184R 
Y36A, as the active sites of the latter are very much similar 
to KatG and are capable of activating INH. The pyrimidine 
ring of the hybrid partner contributes in making π-stacking 
interactions with Phe254 (ring-to-ring distance 5.36 Å). The 
N2-H (next to CO) of the hydrazide moiety of INH unit 
binds through hydrogen bonding to Glu118 (Glu118···H–N2: 
2.64 Å) (Fig. 3), while N3–H of the hydrazide is hydrogen 
bonded to Glu116 (Glu116-O···H–N3: 2.39 Å). Likewise, 
N3 of the pyrimidine ring also makes hydrogen bonding 
interaction with Glu116 (Glu116-O···H–N3-Pyr: 2.21 Å). 
The ester carbonyl oxygen atom is hydrogen bonded with 
a molecule of water (2.37 Å), the latter is further bonded, 

Phe254

Glu118

Glu116

Gln423

Fig. 3   Two- and three-dimensional docking poses of compound 8a 
showing the interactions in the binding sites of bovine lactoperoxi-
dase (PDB ID: 3I6N)
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through hydrogen bonding with Gln423 (2.05 Å) residue. 
Compared to the docking of pristine INH in the binding 
pocket of 3I6N (Fig. SI), through π-stacking interactions 
with Arg255A and hydrogen bonding of the hydrazide NH 
with Gln423A, the hybrid 8a shows additional interactions 
of the hybrid partner (pyrimidine unit) with the ligand bind-
ing sites as projected in Fig. 2.

The docking of 8a into the active site of the cytochrome 
C peroxidase (PDB ID: 2V2E) revealed binding of N3H 
of the hydrazide moiety with Ser185 (Ser185-O···H–N3: 
1.74 Å). The N2H of 8a is bonded to a water molecule 
(N2H···H–OH: 1.68 Å), which in turn is bound to Arg184 
(Arg184-O···H–OH: 1.92 Å). Interestingly, while the car-
bonyl oxygen atom of INH makes interaction with Phe254 
(Phe254-H···O=C), in the case of 8a, its binding with 
Ser185 is intercepted by a water molecule (C=O···H–OH: 
1.62 Å), which acts as a bridge to bind the oxygen atoms of 
both Ser185 (Ser185-O···H–OH: 1.91 Å), as well as carbonyl 
group of 8a (Fig. 4). The SPG scores of the docking of 8a 
in the active sites of the bovine lactoperoxidase (PDB ID: 
3I6N) and cytochrome C peroxidase (PDB ID: 2V2E) were 

− 4.348 and − 5.732, respectively, while the Glide energies 
were − 27.699 and − 23.605 kcal/mol, respectively.

Prediction of ADME parameters for all the members of 
this series of hybrids was performed, and the results are 
presented in Table S1 of Supporting Information. Except 
QPlogHERG descriptor (prediction for HERG-K + channel 
inhibition) and QPPMDCK for 8i and 8j, all other ADME 
parameters were found to lie within the acceptable range.

In summary, a new series of INH–pyrimidine conjugates 
were prepared as potential antitubercular conjugates against 
H37Rv strains of M. tuberculosis. The compounds depicted 
structure-dependent antitubercular activity. Two conjugates, 8a 
and 8c, were identified as the most active of this series. How-
ever, none of these compounds was more active than isoniazid, 
and thus, more structure optimization is required for these new 
conjugates. Cytotoxicity of selected compounds was assayed 
against mammalian Vero cell line, and the most active members 
were less cytotoxic than emetine used as the reference standard.
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